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Executive Summary 
This deliverable (D2.1 Digital tools specification, architecture and work strategy) is the result of the 
work mainly done in T2.1 Requirements and specifications of DTs and DSS. Results discussed in this 
deliverable are primarily the methodology combined with an overview of the project phases in WP2 
as well as the data requirements and general architecture for the Digital Twin and the Decision 
Support System. 

The methodology used in WP2 is the inductive approach, where in specific observations and data are 
collected and analysed to generate overarching theories or generalizations based on patterns and 
trends identified within the collected information. For example, we created initial simulation models 
of the manufacturing lines of the two demonstrators and analyse and refine these stepwise.  

WP2 consists of four main phases: In phase one the key performance indicators suitable for the 
demonstrators were researched and defined. From these, the data requirements were derived. The 
second phase starts with the beginning of T2.2, which supports the model extraction and validation 
by ensuring the products quality and that the customers demand is met. Shortly after, the third phase 
starts with the beginning of T2.3 and aims to extract the needed models to create the Digital Twins 
and enabling the Decision Support System to suggest different courses of actions. Additionally, a 
process for automating the model validation will be researched and implemented. And finally in the 
last phase, starting with T2.4, the decision support and optimization are addressed. Currently, the 
first phase is concluded with this deliverable and phase two is started. From here on, the phases are 
not strictly sequential as, for example, changes in the model extraction could affect the evaluation on 
the products quality or if the customers demand is met and vice versa. Lastly, through the whole 
project there is one omnipresent phase which targets data and information security. This ensures one 
the hand that the architecture and the system as a whole is secure, minimizing the risk of data or 
knowledge leaks. On the other hand, guaranteeing that personal data and other sensitive data are 
handled appropriately. This is build on the knowledge and expertise on the security and data handling 
set up in WP3. 

The data requirements listed in this deliverable target three main goals and objectives: energy 
efficiency, worker well-being and system reliability. In light of the climate change everybody needs 
to save energy, in business, this can be leveraged to be a competitive advantage. Thus, the first 
objective for energy efficiency is to strengthen the understanding of the energy consumption of the 
factories which later will be expanded enabling the Decision Support System to give suggestions on 
saving possibilities. The second major functionality that the Digital Twins in conjunction with the 
Decision Support System will provide is the observation and prediction of worker well-being while 
not infringing on personal data protection. To do this, several methods are combined with 
anonymized data to measure worker well-being and enable the Decision Support System to provide 
appropriate courses of actions. The third goal is the modelling of the system reliability to do so two 
methods are used: fuzzy fault trees and stochastic Petri nets. The results of both methods will be sent 
to the Decision Support System enabling it to draw accurate pictures of the state of the 
manufacturing lines. 

The architecture of the Digital Twins and the Decision Support System focuses on two main 
characteristics: adaptability and plug & play. To achieve this, we introduced a layered architecture 
that has a single point of contact between the manufacturing line and the digital system, allowing the 
system to be plugged onto any manufacturing line only requiring adjustments to the connector. 
Furthermore, a maximum of adaptability is reached through two mechanisms. Firstly, each 
component is designed in a way that it operates in an isolated manner and provides a standardized 
interface. Thus, each component is autonomous while defining clear communication channels for the 
other components. Secondly, the Digital Twins themselves are constructed in a way that allows a 
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maximum of flexibility during creation and adaption. Here, a hierarchical approach was chosen. Each 
Digital Twin can have as many sub twins as needed to model the process, machine, etc. as detailed 
as needed. Furthermore, there are no limitations to the number of Digital Twins on the same 
hierarchical level. Lastly, all Digital Twins are interconnected to each other on the same hierarchical 
level, leveraging the strengthened prediction and modelling capabilities of the combination of various 
independent Digital Twins. 
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1. Introduction 
Work Package 2 (WP2) focuses on critical aspects of the project, aimed at developing and validating 
key components essential for its success. This work package is centred around the creation and 
implementation of a data-driven self-reconfigurable Digital Twin (DT) [T2.3] and a distributed self-
learning Decision Support System (DSS) [T2.4]. Additionally, it addresses the vital task of defining 
how product quality will be measured and aligned with customer demands [T2.2]. The ultimate 
objective is to deliver these modules as "plug-and-play" service packages and adapt them to physical 
components and end-users for seamless integration into the Intelligent Orchestration Platform (IOP). 
Furthermore, these developments will be demonstrated in real-world scenarios as part of the 
activities in WP5. WP2 plays a crucial role in ensuring the success of the project and the efficient 
functioning of the manufacturing plants in different sectors (food and pharmaceutical) involved in the 
demonstration. 

The objectives of this WP are the following:   

1. Develop and validate a data-driven self-reconfigurable DT [T2.3] 
2. Develop and validate a distributed self-learning DSS [T2.4] 
3. Define how the quality of the product is measured and how it is related to the customer 

demands [T2.2] 
4. Deliver all the modules as “plug-and-play” services packages and determine their 

requirements, inputs, outputs and interrelation 
5. Adapt the DT and DSS to the physical components and the end-users for their further 

integration with the IOP and the demonstration activities in WP5 [T2.3, T2.4] 

Objectives from the GA in T2.1: 

• List of requirements and KPIs for the digital twins and DSS, based on the needs of the two 
demonstrators, i.e., the two manufacturing plants from different sectors (food and 
pharmaceutical) 

• Design of digital tools and suitable algorithms 

This document contains the results of the activities performed in T2.1 DATA REQUIREMENTS AND 
SPECIFICATIONS OF DTS AND DSS. This entails in particular the proposed Digital Twin (DT) 
architecture as well as its data requirements. While the initial goal of establishing a DT architecture 
has been successfully achieved, the latter objective is expected to undergo continual adjustments as 
the use cases of ORI and MOL naturally evolve during the implementation process. Considering this, 
it is important to recognize that the data requirements outlined in Chapter 3 represent a momentary 
snapshot and are subject to modification over time. 

1.1. Activities Performed 

In the following, a description of the activities performed, and the results will be provided. 

Activities from GA 

Active communication with the demonstrators and stakeholders to define the KPIs and requirements 
for the DTs. A detailed architecture of the DTs is defined including the methodology to be followed 
during the development to achieve the innovative objectives proposed. This includes the detail of the 
technical requirements and the creation of their ontology, further used during the development in 
T2.3 and T2.4. 
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Figure 1: Data Requirements Plot: KPIs (blue ovals) and their corresponding data points (grey boxes) 
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Literature Review 

In the first step a thorough literature review was conducted with the aim of identifying performance 
metrics in manufacturing systems in relation to the typical goals and, thus, foster the understanding 
of the demonstrators needs. In this comprehensive analysis, 2227 papers were inspected resulting in 
72 relevant KPIs which are utilizing around 100 data points and can be grouped in four main 
categories of performance metrics. The first category is Work and Production Effectiveness such as 
Overall Equipment Effectiveness or Overall Throughput Effectiveness. The second category is 
Sustainable Development such as Direct Energy Consumption Effectiveness or Scrap Ratio. The third 
category is Digital Transformation such as Data-Driven Decision-Making or Return on Digital 

Investments. The last category is Occupational Health and Safety such as Lost Time Injury Frequency 
Rate or Average Accident-Free Days. With these KPIs (blue ovals) and their corresponding data points 
(grey boxes) in place we could create plots such as the one shown in Figure 1. These plots help us to 
understand the structure of the data requirements, in particular, their interconnections and 
dependencies. For example, we can analyse which data points and KPIs are depending on other KPIs, 
how the data points are used within the KPIs and which data point mix enables the largest and least 
overlapping KPI mix. As a result, we can derive first-level data processing definitions, and define a list 

Figure 2: Questionnaire 
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of needed data points, which provides guidance to INO and AUTO when installing sensors as well as 
aiding with the selection process of a resilient, independent, and effective KPI mix. 

Meetings with Partners 

Throughout T2.1 we had several important meetings with partners. The first one was held with INO, 
MOL and ORI and aimed to foster their understanding of our WP and methodology. In this meeting 
we showed them the results of the literature review and discussed how we are going to use them as 
a foundation for the upcoming steps. In a second step they each provided us feedback on the 
discussed pointes and examples of which KPIs would fit best for their needs. Based on this meeting 
we created a questionnaire (shown in Figure 2, described in the section below) and conducted one 
meeting with each of the demonstrators ORI and MOL. In these meetings, we discussed the 
questionnaire as well as the impact on our plans and assumptions. 

With the start of T2.2, which is led by INO, we had several discussions with all participating partners 
to ensure the products’ quality and alignment with customers’ demands. Furthermore, this helped 
refocus the tasks to ensure optimal cooperation and task alignment given the progress made. 

Towards the end of T2.1, the use cases description for MOL and ORI were finalized. For both ORI 
and MOL, two use cases were identified. For MOL, the objective of the first use case is to identify 
and discard the defective olives through an AI-based vision system while the second one is concerned 
with end-of-line product palletization. For ORI, in the first use case a cobot moves MP and FP boxes 
from a pallet to the production buffer and vice versa. The second use case focuses on the end-of-line 
product palletization while also incorporating quality control checks. 

The last two meetings were held towards the end of T2.1 and mainly focused on the feedback of ORI 
and MOL on our work. In particular, we focused on their input regarding our simulation models to 
refine them further. In line with our inductive approach, we were able to capture and model the 
manufacturing line in greater detail. Thus, the current models form a solid basis for the upcoming 
T2.3 Data-driven digital twins module development, validation, and tune-up and T2.4 Smart 
distributed decision support system module development, validation, and tune-up. 

 

Questionnaire 

To better understand the manufacturing lines and goals of ORI and MOL, we created the 
questionnaire shown in Figure 2. This, in conjunction with associated meetings, gave us a lot of insight 
into their production and enabled us to create initial simulation models. Figure 3 shows the simulation 
created for MOL and Figure 4 for ORI. These initial models will be further refined with the proceeding 
of the tasks in WP2 according to the inductive approach used and play a vital role in the creation of 
the DT and the DSS. The models form the foundation for deriving the data requirements for the DTs 
and DSS in T2.3 and T2.4 since neither ORI nor MOL currently have enough high-quality data 
available nor the procedures or technologies to automate the data collection. This challenge will be 
overcome with the implementation of the IOP and the new sensors. 
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Figure 3: MOL initial AnyLogic Simulation Model 
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Figure 4: ORI initial AnyLogic Simulation Model 
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2. Methodology 
In WP2 we use an inductive Approach. This entails drawing overarching principles or conclusions by 
extrapolating from specific observations or instances, thus allowing for the development of a 
comprehensive and flexible framework that accommodates a wide range of scenarios. For example, 
we modelled initial versions of both manufacturing pipelines as simulations and are going to refine 
them iteratively through the development of the DT and DSS in close cooperation with the respective 
partners. This approach allows us to incrementally grasp and encompass the intricacies of these 
distinct manufacturing lines. It also enables us to model minute details since individual steps may be 
relatively small in comparison to the overall complexity of the system. Consequently, we can 
construct the complexity of the manufacturing lines one step at a time, focusing on specific processes, 
behaviours, or machines during each step.  

WP2 is divided into four phases and an omnipresent phase as seen in Figure 5. The five main phases 
are not strictly sequential, since they greatly influence each other, or one is derived from the other. 
Thus, if bigger changes occur in one phase, an earlier phase may very likely need to be revised as well. 
In the first phase, we defined KPIs that are in sync with the production and environmental goals, as 
well as capturing the worker's health and well-being sufficiently. Using these we defined the data 
requirements. This, in particular, entails exploring available data sources and matching them to the 
KPIs as well as researching and defining appropriate data validation methods and pipelines. “Standard 
types of validation are related to size (e.g., size of dataset, number of features), data values (e.g. 
unique values, range values, outliners), quality of data (missing values, value accuracy, value reliability, 
time-related value, missformats), cross-artifact data validation (missing features, skew). Different 
types are applied for different artefacts”[1]. In the second phase, we focus on ensuring the products 
quality and that the customers demand is met. Shortly after, the third phase starts with the model 
extraction, e.g., of the machines and the human workers within the manufacturing line. Depending 
on the data sources and model complexity, a variety of methods, such as process mining, data 
analytics, and machine learning will be employed. For example, psychological stress detection via 
pupil diameter analysis [16], [17], emotional stress detection via heart rate variability [18], stress 
detection using accelerometer [19] or Process Mining for reliability modelling [2], [3]. The models 
themselves also very much depend on their use case, possible representations may be Knowledge 
Graphs, fuzzy Fault Trees, Artificial Neural Network or stochastic Petri Nets [3]. Additionally, we 
focus on automating the model validation as part of the digital twin loop. Methods like T-test, F-test, 
Kolmogorov-Smirnov test and Anderson-Darling test could be used as suggested by [4]–[10]. 
Therefore, a process needs to be defined and implemented that ensures the quality and correctness 
of the updated models. While and after implementing the aforementioned points the resulting 
framework should not only be robust to changes, but also capable of automatically updating the 
internal models of the DTs to incorporate these changes in the manufacturing processes.   In the last 
phase, we will focus on investigating and implementing decision support and optimization. This 
aspect, for example, could entail automation of experimenting and optimization [11].  

The previously mentioned omnipresent phase analyses data and information security. This entails in 
particular concerns in relation to data privacy. Throughout the project, it needs to be ensured that 
the personal and manufacturing data provided, is used with the utmost care and that the architecture 
of the DT is robust enough to enable data anonymization where necessary and prevent data leaks. 
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One possibility to achieve this is the use of privacy-preserving data mining techniques [12]. A more 
in-depth analysis of data privacy can be found in D7.7 chapter 2.1.2. 

 

 

Figure 5: WP2 Phases 
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3. Data Requirements and Specifications for DTs and DSSs 
Table 1 lists the grouped data requirements for enabling the development of DTs and corresponding 
DSSs. The data points are categorized by the use case. If a data point is used by more than one main 
goal another suitable group is created to reduce repetitions. The data requirements themselves are 
derived from the goals and objectives the DT and the DSS are aimed to fulfil. These goals are mainly 
energy efficiency, worker well-being and system reliability. After evaluating the technical data 
requirements and before the data is being used, an examination of ethical and data protection 
consequences is conducted. The data requirements listed are assumed to be as perfect scenario based 
on the state of the art and advances beyond it. However, it is recognised that, due to lack of data 
monitoring or ethics & privacy issues some might not be achieved.  

Energy Efficiency 

The rapid expansion of the global economy and the surging world population have led to an 
unprecedented increase in energy demand, raising concerns about energy supply limitations, 
dwindling resources, and severe environmental consequences [13]. Despite more than three decades 
of political efforts and extensive awareness about the causes and direct implications of climate 
change, global carbon dioxide emissions persistently surge, now standing at a staggering 60% higher 
than the 1990 levels [14]. Of particular concern is the industrial manufacturing sector, which not only 
accounts for over 30% of total primary energy consumption [15] but also contributes approximately 
36% of total greenhouse gas emissions [16]. Predictions suggest that by 2040, demand for natural 
gas will have increased by over 50%, with liquefied natural gas (LNG) trade providing some flexibility 
to mitigate supply disruptions [17]. In response to these mounting challenges, several nations have 
set ambitious "net zero" carbon emission targets [18], [19], prompting strict regulations for 
manufacturing systems to reduce their carbon footprint [20]. The implementation of low carbon 
audits along with high consumption demand has led to an increase in production costs and thus has 
a direct impact on the competitiveness of companies in global markets [21]. Achieving "net zero" 
carbon emission targets necessitates the development of more sophisticated energy-saving 
technologies and the establishment of a low-carbon energy ecosystem within the industrial 
manufacturing sector [22], [23]. In this context, the application of the digital twin concept to enhance 
energy efficiency emerges as a promising research frontier, capitalizing on the advancements in 
Industry 4.0 technologies [24]. A key driver behind the efficiency of digital twins within the ambit of 
Smart Manufacturing is the infusion of data-driven methodologies. The concept of a data-driven 
digital twin is driven by the exponential growth of data in smart factories [25]. Data-driven digital 
twins capitalize on the wealth of real-time and historical data harvested from sensors, IoT devices, 
and interconnected systems [26]. Utilizing this data effectively allows for the creation of accurate 
models representing manufacturing systems [25]. Therefore, the data points listed in Table 1 aim in 
the first step to foster the understanding of energy consumption and in the second step enabling the 
prediction of saving possibilities. 

Worker Well-being 

Worker well-being in general is a complex and multidimensional task that involves assessing various 
aspects of a person’s work life. In fact, many aspects in the private lives can have a tremendous impact 
on the worker well-being at work, which complicates the matter even more. Nonetheless, it is 
possible to measure worker well-being meaningfully and purposefully plus the upsides of workers 
who feel well are significant and worth the business investment. Positive effects can be but are not 
limited to increased productivity, decreased absenteeism, better job performance, and decreased 
voluntary turnover [27]. Different methods of evaluating worker well-being have been proposed and 
implemented, in this project we intend to use the following methods: 
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1. Psychological Stress detection via pupil diameter analysis [28], [29] 
2. Emotional Stress detection via heart rate variability [30] 
3. Stress detection using accelerometer [31] 

A key benefit of all these methods is that they are non-intrusive into the work environment which 
means the adjustment period is significantly shortened plus there is no additional stress put onto the 
workers themselves. Furthermore, by combining the three methods measurement errors or effects 
of data noise can be minimized increasing the overall predictive capabilities. To further increase it, a 
number of adjacent factors are considered which can have a direct or indirect effect on the workers 
well-being. The first factor is the general environment the workers are in. To derive concrete 
implications on the well-being the following environmental variable are tracked and measured: 
temperature, humidity, noise and illumination level [32]. The second factor which is considered aims 
to measure the fatigue level of a worker throughout their shift. To do so three KPIs are inspected: 
Production Quantity, Throughput Rate and Quality Ratio. The general assumption being that these 
drop with an increased fatigue level. The third factor tries to incapsulate the individual worker. In 
particular their physical attributes such as hight and weight and their consumption of alcohol and 
tobacco. These variables would benefit the results accuracy since they can have a direct and 
significant impact on heart rate [33] and pupil diameter [34] as well as noise and illumination 
sensitivity. Nevertheless, due to ethics, privacy and/or legal restrictions it might be difficult to achieve 
this data. The last factor we want to consider are the product characteristics the worker is working 
on or with. More specifically the weight of the product (or the parts of the product the worker has to 
move) its dimensions and if it can be toxic or contain toxic materials. These measurements together 
with the work schedule of the worker and the current event log of their processes allow us to derive 
a qualitative judgment about the workers well-being. To do so, we contrast the measured stress levels 
combined with the four adjacent factors for the given event log against a task or process specific 
mean stress. This mean stress level is calculated by taking the mean stress level of records of workers 
with similar event logs. Similar meaning the physical and mental stress levels are comparable. If 
significant deviations are spotted, the DSS will send out a warning and suggest one or more 
recommended courses of action. 

Reliability 

Understanding the reliability of a system is essential for making informed decisions regarding 
maintenance schedules, safety measures, performance expectations, and overall system design. This 
knowledge ultimately contributes to the system's efficiency, safety, and long-term success, while also 
enabling organizations to minimize downtime, reduce operational costs, maintain customer 
satisfaction, meet regulatory requirements, and achieve their goals and objectives effectively and 
with confidence. We want to utilize two methods to model the reliability of the manufacturing lines 
of MOL and ORI. The first method uses event logs in combination with state logs to generate 
stochastic Petri Nets, as demonstrated by Jonas Friederich and Sanja Lazarova-Molnar [3]. The 
second method uses fuzzy fault trees to model the reliability of the system [35] given the System 
Failure Data and Operating Conditions. 

Data Requirements for DT and DSS 
Use Case Name Description Format/Frequency 
Energy 
Efficency 

Energy Consumption Data 
Whole System 

Records of electricity, gas, fuel 
oil, or other energy sources 
used over time for whole 
system. 

Time Series, value 
each hour 

 Energy Consumption Data 
Each Process 

Records of electricity, gas, fuel 
oil, or other energy sources 

Time Series, value 
each minute 
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used over time for each 
Process  

 Energy Consumption Data 
Each Equipment 

Records of electricity, gas, fuel 
oil, or other energy sources 
used over time for each 
Equipment. 

Time Series, value 
each minute 

 List of Electrical Equipment The information includes 
device name, model, and 
usage. 

List 

 Renewable Energy 
Production Data 

Energy generated by 
renewable sources (solar 
panels, wind turbines, etc.) 

Time Series, value 
each minute 

 Renewable Energy 
Consumption Data 

Renewable energy used/Total 
energy used for the whole 
system, process, and single 
equipment. 

Time Series, value 
each minute 

 Energy Tariffs Information about energy 
pricing structures, peak and 
off-peak rates, and demand 
charges + changes during time. 

List 

 Grid Connection 
Information 

Information about the existing 
power grid and its capacity to 
integrate renewable energy. 
Voltage levels and connection 
points for feeding renewable 
energy into the grid. 

List 

 Energy Storage Systems Information about energy 
storage systems (batteries, 
capacitors, etc.) if applicable. 

List 

 Emission Data CO2, CH4, N2O Emissions 
(Greenhouse)  

Time Series, value 
each minute 

Well-being Heart Rate Fitness tracker like Fitbit Time Series, value 
each minute 

 Movement/Steps Accelerator Time Series, value 
each second 

 Work Schedule At what times does the worker 
work and when are the breaks.  

Ideally past 4 
weeks plus current 

plus planned 
 Event Log Beginning of processing / End 

of processing for each 
operator/machine 

Time Series, 
depending on 

machine and/or 
process 

 Pupil Tracker Eye-Tracker Time Series, value 
each second 

 Anonymized Personal 
Data: 
Alcohol, tobacco, height, 
weight 

Questionnaire  At the start of 
work contract, 

updated every 6 
months 

 Production Goals KPIs used to set the target 
production levels/efficiency 

List, updates with 
timestamp 

Reliability Event Data Beginning of processing / End 
of processing for each 
operator/machine 

Time Series, 
depending on 
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process and/or 
machine 

 System Failure Data Data of past system failures 
and categorisation of failure 
types 

Time Series, as 
they occur 

 Maintenance records Scheduled or reactive and 
associated repair logs  

Time Series, as 
they occur 

 Operating Conditions Pressure, vibrations etc. Time Series, 
depending on 

machine 
 State Logs The state of the machine. 

OPC-UA, Modbus 
Time Series, as 

they occur 
Production 
and  

Production Quantity Products produced in last hour Time Series, as 
data is available 

Performance Throughput Rate Actual Oder Execution Time + 
Produced Quantity (ORI: 
Labour efficiency Production) 
for each hour 

Time Series, as 
data is available 

 Quality Ratio Produced Quantity + Good 
Quantity (ORI: Right First Time 
Production) for each hour 

Time Series, as 
data is available 

 Workload The workload each machine 
and worker is expected to 
deliver. 

List, updates with 
timestamp 

 Operating Schedules When different processes and 
equipment are active. For the 
current day, ideally also 
historical and future data. 

Ideally past 4 
weeks plus current 

plus planned 

Product Weight The weight of the product (and 
its part if the worker has to lift 
them). Potentially from ERP or 
MES 

List, updates with 
timestamp.  

 Dimensions Relevant dimensions of the 
Product. Potentially from ERP 
or MES 

List, updates with 
timestamp.  

 Toxic Material Can the worker or 
environment get in contact 
with toxic materials (e.g., gases 
or alloys). Potentially from ERP 
or MES 

List, updates with 
timestamp.  

Environment Temperature Thermostat at workstations Time Series, value 
each minute 

 Humidity Hygrometer Time Series, value 
each minute 

 Noise Level Decibel Meter Time Series, value 
each second 

 Illuminance level Luxmeter Time Series, value 
each minute 

 Weather Data API Time Series, value 
each day 

 Building Information Building structure, insulation, 
and HVAC systems data. 

List, updates with 
timestamp 
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 BIM - Space Use Information about the 
building's layout, including 
walls, windows, doors, and 
spatial divisions. This geometry 
data is used to calculate the 
building's surface area, volume, 
and distribution of spaces, 
which are key factors in 
energy analysis. And insulation 
levels, window types, and 
shading devices.  

List, updates with 
timestamp 

 BIM - Materials and 
Thermal Properties 
 

Materials and Thermal 
Properties:  about the 
materials used in construction, 
including their thermal 
properties such as insulation 
values, heat capacity, and 
conductivity. 

List, updates with 
timestamp 

 BIM - HVAC Systems: 
 

Heating, ventilation, and air 
conditioning (HVAC) systems. 
This includes the location of 
HVAC equipment, ductwork, 
air terminals, and 
specifications about system 
performance, which impact 
energy consumption for 
climate control 

List, updates with 
timestamp 

Table 1: Data Requirements for DT and DSS 
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4. Architecture 
This chapter introduces a DT architecture for manufacturing systems with cobots, explaining the 
components, functionalities, and interconnections of each system component.  

The proposed architecture's three main layers plus the physical twin are illustrated in Figure 6:  

1. Physical Twin 
2. Communication and Data Extraction Layer  
3. Virtual Manufacturing System Layer  
4. User Interaction Layer  

 

Figure 6: Layer and network view of the architecture 
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To ensure practical applicability, this architecture adheres to the requirements of ISO 23247 
"Automation systems and integration - Digital twin framework for manufacturing". Experts 
highlighted the importance of two features proposed in the ISO 23247 standardization in a survey: 
plug-and-play and peer interference. In the presented architecture, plug and play functionality is 
achieved through the Device Communication Interface by enabling a dynamic connection to the 
physical manufacturing system, which is explained in more detail in the section on the communication 
and data extraction layer. According to ISO 23247, the peer interface “[…] provides interfaces to 
other digital twins in conjunction with the interoperability support […]” [36]. This functionality is 
realized by the co-simulation interface of each of the digital twin models in our architecture, which 
allows them to interact with each other. The co-simulation interface is explained in more detail below. 
In addition, the surveyed experts claimed that data storage and digital twin visioning functionalities 
are crucial and must be incorporated into any digital twin architecture for manufacturing systems, 
even if they are not specified in ISO 23247.  These two aspects are also considered in this 
architecture. Figure 7 displays the architecture of a digital twin for a manufacturing system with 
collaborative robots. The subsequent section describes each layer with its components, structures, 
and functionalities. Lastly, the information exchange between the layers and the network connections 
of the architecture are explained.  

Physical manufacturing system layer    

The Physical Manufacturing System Layer (PMSL) represents the actual manufacturing system that 
should be monitored and analysed with the DT. One of the initial steps in developing a DT is to 
acquire precise and dependable data of the manufacturing system. That data can be obtained in the 
manufacturing system through sensors or from the controller and enterprise manufacturing systems 
such as ERP, MES, WMS or Production Planning System (PPS). Chapter three discusses the data 
specifications and requirements in detail. The data acquired is seamlessly transferred from this layer 
to the Communication and Data Extraction Layer without processing or storage [37].  

Communication and data extraction layer  

The Communication and Data Extraction Layer (CDEL) consists of two main elements: The Device 
Communication Interface (DCI) and the Data-Centric Middleware (DCM). Together, they operate as 
an IoT gateway [38] and “[…]act as a bridge between the physical and cyber layer by receiving all the 
data packets from the physical systems, processing them and converting them into a machine-
readable form[…]” [39] and transmitting them to the data storage. “The IoT gateway is a middle-ware 
between devices and cloud and facilitates computations and communication” [40]. 
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Figure 7: General architecture 
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The data streams from the physical twin enter the Device Communication Interface, which is the 
only point of contact between the virtual and physical components acting as a standardized service 
interfaces [41]. Thus, only the DCI needs to be configured and customized during implementation, 
enabling plug and play of the DT. The DCI enables seamless connection between virtual and physical 
manufacturing system, achieving real-time synchronization and updating with the huge amount of 
data [42]. The multimodal data collected from the manufacturing system with cobots is uploaded to 
the raw database via the DCI through a request-response mechanism, while the results of the 
analysis, simulation and decision support system are transmitted to the manufacturing system after 
being converted into control commands[43]. 

Currently, three key components for digital twin data storage have been identified: raw data storage, 
real-time data pre-processing, and data storage of processed data[44]. These three steps together 
constitute the data-centric middleware in our architecture. Before performing data preprocessing, 
the data is stored in the raw database. This database is hosted in the cloud, facilitating the real-time 
collection and unification of data from various machines and cobots of the manufacturing system[45]. 
Data extraction represents the first step of data preprocessing. A scanning algorithm runs on the 
incoming data during which the communication protocols are identified before the data packets are 
decoded based on the identified protocols and the corresponding extraction software. To achieve 
real-time processing of incoming data Apache Kafka is used. Apache Kafka is a software for 
processing data streams. It is designed especially for storing and processing data streams, and for 
loading and exporting data to external systems. The central architecture of Kafka is based on a 
distributed transaction log. In Big Data scenarios, where large volumes of logs are generated 
continuously, managing, sending and storing these logs can be challenging. Apache Kafka offers a 
solution for effectively handling and analysing extensive volumes of log files. It is especially suitable 
for scenarios where there is a need for promptly processing and analysing massive amounts of data 
[46]. 

After completing the data extraction, the data from different machines and systems is presented in a 
machine-readable unified data format such as JSON or CSV files [39]. After conversion, the data is 
cleaned and filtered before being uploaded to the data storage in the cloud, which makes the data 
universally accessible [47]. The data storage is the single point of truth, meaning it is the central, single 
reference point where all data and information for the DT models of a manufacturing system can be 
found. 

The data storage is divided into two stages. On the one side, there is a cloud storage where the 
current system configuration is stored. This data storage holds the recent data collected from the 
manufacturing system, the current the DT models, optimization algorithms, methods for modelling 
and prediction, the results of the latest simulations and information about the current production line, 
including process information, equipment information, layout information or machine runtime 
condition[48]. “As the amount of cloud storage is limited and expensive, only the most recent and 
latest data is stored in the cloud for immediate retrieval” [39]. Subsequently, the data is transferred 
to offline storage, where all the previous system configurations, old versions of the DT models, 
previous collected data and results are permanently stored to preserve historical knowledge. 

The purpose of applying data-centric middleware is to create a unified platform for exchanging 
information among the different systems. As aforementioned, as with all incoming data, the outgoing 
results of analysis, simulation, and decision making, as well as the data identified as necessary, must 
be transformed into the appropriate control commands or information before being transmitted via 
the DCI to the physical manufacturing system layer. In this way, the data- centric software fulfils the 
role of the controlling entity required by ISO 23247. 
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Virtual manufacturing system layer  

The Virtual Manufacturing System Layer (VMSL) executes the DTs and is composed of different DT 
models that are interconnected and synchronized to allow data exchange[39]. As a result, the VMSL 
should be capable of establishing real synergy among these simulation models and thereby opening 
new opportunities to address complex scenarios [41]. 

A DT of a manufacturing system can consist of other digital sub-twins representing, for example, a 
sub process of the manufacturing system. Each of which can comprise other digital sub-twins, such 
as a cobot used in that sub process. Multiple sub-DT layers are possible. The simulation-based digital 
twin models can be realized for example by using Petri Nets, discrete event simulation, Markov 
reward models, or agent-based modelling, that represent the corresponding subject. “The set of 
functionalities provided by a parent DT should at least contain the individual functionalities of its 
children DTs. Nevertheless, higher level functionalities can be added to higher hierarchical levels” 
[49]. For a simple DT model of a manufacturing system, the representing DT could consist of only 
one layer with the specific simulation models. Beyond that, each digital twin model is assigned a 
predetermined function that constitutes a specific goal or object within the manufacturing system
[39]. Following this approach, the maximum flexibility and scalability of the DT is realized, as the DT 
of the manufacturing system with cobots can be tailored to the respective goals or objects of the 
company that are being targeted for analysis. Another advantage of this hierarchical layered approach 
is that instead of optimizing or deriving the entire DT of the manufacturing system with cobots from 
scratch, only a subset of the DT can be considered, saving time and resources [39]. 

An initial digital twin of the manufacturing system of MOL would be that the first layer consists of 
the manufacturing system, the manufacturing environment, and the product. The manufacturing 
system model comprises multiple interconnected digital twins of machines, cobots, process and 
logistics units, as well as a layout model that simulates system reliability and throughput. The olive 
processing system's reliability is modelled using a Petri Net, discrete event simulation, reliability block 
diagram, and a fault tree. Figure 8 provides an illustration of this exemplary structure for olive 
processing.  

 

Figure 8: Exemplary design of the different levels of the virtual manufacturing system 
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One single digital twin model has a two-part structure. The first part is the current model, which 
performs real-time simulation and monitors the physical manufacturing system. The second part is 
the iterative optimization process that automatically aims to improve the current model.  

The current model must perform two primary tasks. First, it must monitor and analyse the current 
state of the system, cobot, or machine in real time, depending on the object represented in the model. 
Functions such as traceability, condition monitoring and current state gathering, are utilized to 
monitor and analyse the system's current state. Secondly, the model must perform simulation that 
includes at the machine or process level functionalities such as machine and process KPI estimation 
as well as damage, wear, or failure estimation. The simulation of the entire manufacturing system 
with cobots includes performing functionalities such as design validation, production and 
maintenance planning/scheduling or bottleneck identification [50]. 

The DT model's second task is to optimize the simulation model itself. To do so, the simulation model 
is constructed in an iterative manner [51]. After performing the input analysis, the simulation model 
is developed, before the developed model is verified and validated. During the input analysis, the 
incoming data undergoes processing and analysis. With data mining, features such as mean, standard 
deviation, or stochastic distribution are automatically extracted and parameters are estimated, which 
are then used for constructing the DT models [45]. The next step is to perform output analysis and 
evaluate the newly created model. If the newly created model outperforms the current simulation 
model, the latter will be stored in the offline storage to keep track of the model versions, and the new 
simulation model will be used for monitoring and simulation [51].  

We propose a co-simulation interface to realize the interconnection of all digital twin models[36]. 
The co-simulation interface provides four main functionalities: First, the interface supports the 
exchange of simulation models and data between each other. Second, it enables real-time simulation 
interworking of different simulation models. By executing different simulation models together, more 
complex scenarios and synergies among the models can be realized to better replicate the real 
manufacturing system [41]. The third function is time synchronization among simulators, which is 
necessary for accurate simulation results. Lastly, the co-simulation interface allows to control the 
execution of the simulation. A common approach for implementing the co-simulation interface in 
practice is the Functional Mockup Interface [36]. The Functional Mockup Interface (FMI) is a 
standardized system that enables the exchange and co-simulation of dynamic models, primarily 
designed to facilitate the sharing of simulation models across different tools between suppliers and 
OEMs. The FMI is the result of a collaborative effort between simulation tool vendors, companies, 
and research institutes to address aspects of model exchange and co-simulation [52]. 

An Application Programming Interface (API) is employed to connect the DT model to the data 
storage. The API allows the DT model to receive continuously the latest data of the manufacturing 
system from the cloud and transmit the simulation results back to the data storage[49]. Through the 
API, the current simulation model, required information, or optimization algorithms can be also 
accessed. Moreover, the API allows for external applications to excess the system. For example to 
query the current state of the DT models or to trigger a simulation start [49]. The layout and structure 
of a DT model is illustrated in Figure 9.  
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Figure 9: Layout and structure of a digital twin model 

User interaction layer  

The User Interaction Layer is comprised of the Decision Support System (DSS) and User Interface 
(UI). A user interface enables an operator to monitor, control, and interact with the DTs and is in line 
with ISO 23247[44]. The UI allows domain experts to add their expert/domain knowledge into the 
DT without the need for computer science or programming knowledge. This expert/domain 
knowledge is often hard or nearly unobtainable to extract from the collected data, and thus the 
simulation models can be improved drastically. 

The DSS performs complex determinations based on the collected data and the results of the 
simulation and analyses this information. This involves, for example, optimizing the manufacturing 
system, including functionalities such as system improvement and system optimization[50]. For the 
system optimization, a method is the simulation-based optimization of manufacturing systems, which 
enhances the decision-making capabilities of simulation. This approach allows to identify the best 
solution or a solution close to the best solution for the target object or goal to be optimized. To 
achieve real-time response of the simulation, methods like symbiotic simulation and online 
simulations as well as linking the optimization and the decision-making engine to the DT model can 
be used[50], [53]. The DSS communicates the decision to the DCM, which converts it into control 
signals and sends those commands to the actuators in the physical manufacturing system[49].  

Finally, we will briefly discuss the network connections between the layers shown in Figure 6. The 
network connections are based on ISO 23247 – Part 4[44]. The PMSL and the CDEL are connected 
through the proximity network. This network sends the control commands to the PMSL and receives 
the data from the industrial sensors and the enterprise manufacturing systems. The Industrial 
Ethernet, such as Profinet, EtherCAT or Modbus, or wireless or proprietary network with a special 
configuration can be chosen for the proximity network[54]. The access network can be either a 
wireless communication network using WLAN and mobile (cellular) network, or a wired network such 
as local area network. The access network is used to facilitate communication between CDEL and the 
VMSL along with the User Interaction Layer. The VMSL and the User Interaction Layer communicate 
through the user network, which can be either public Internet or private intranet.  
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5. Conclusion – Next Steps 
As T2.1 concludes with this deliverable, the next steps are to kick of T2.3 and T2.4 which have the 
goal to develop the DT and the DSS respectively. 

T2.3 Data-driven digital twins module development, validation and tune-up [M10-M48] 

Expected results: 

1. Implementation of a data-driven DTs module;  
2. On-the-fly validation methods built in the DT module;  
3. Adapt the module to the end-users and integration with the DSS and in the IOP;  
4. Demonstration and tune-up. 

Activities: 

i) Design and customise event detection, and process mining methodology to extract simulation 
models from ongoing data collection are created based on the DT. 

ii) Implementation of the methodology in the DT module (ready to be tested).  
iii) Development on-the-fly validation methods that provide quantitative validation of the 

extracted models using the data generated from the manufacturing plants. Test and validate 
the DT module in the SDU’s Industry 4.0 Lab. 

iv) Prepare a final version ready to be integrated in the IOP and deployed for demonstration 
activities (T5.2).  

v) Tune up the DTs based on the demonstration activities results. 

T2.4 Smart distributed decision support system module development, validation and tune-
up [M10-M48] 

Expected results: 

1. Development of a DSS;  
2. Test and validate;  
3. Adapt to use-cases scenarios;  
4. Integration with the IOP;  
5. Demonstration in a real environment and tune-up based on the results. 

Activities: 

Based on the KPIs from T2.1, the DSS module will provide recommendations to improve and calibrate 
manufacturing systems ’ behaviours in the demo sites. The DTs created in T2.3 will be used to 
simulate various ‘what-if scenarios’ and to optimise configurations on the predefined KPIs. 
Furthermore, these approaches will also be integrated on the self-learning DSS to prove the whole 
system's functionality and adaptation (modularity) ability. By M30 there will be presented a final 
version ready to be integrated with the IOP. Further on, it will be under maintenance and tuned up 
based on the demonstration results (WP5). 
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