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Executive Summary 
This deliverable presents a technological scouting of an open-source Intelligent Orchestration 

Platform (IOP) conducted with the objective of identifying current trends, opportunities, and 

challenges in implementing Industry 4.0 reference architectures, data architectures, specifically 

Kappa and Lambda, and open-source frontend development frameworks.  

The investigation on Industry 4.0 reference architectures formed the initial focus of this analysis. 

Industry 4.0 signifies the next phase in the digitization of the manufacturing sector, with smart 

factories at its heart. The crucial component of the Industry 4.0 reference architecture is the 

implementation of IOP, where the interoperability of systems and data transparency are emphasized. 

Successful implementations of reference architectures were found across a wide range of industry 

sectors. These examples provide clear evidence of the efficacy and adaptability of such reference 

architectures, revealing their capacity to enhance operational efficiency, data utilization, and 

decision-making process through real-time data analysis.  

Next, the scouting delved into the exploration of data architectures, focusing on Kappa and Lambda. 

Lambda architecture is designed to handle massive quantities of data by using batch processing and 

stream-processing methods. It delivers robust and fault-tolerant capabilities but comes with a higher 

level of complexity. On the other hand, Kappa architecture is a simpler alternative, proposes to unify 

the batch and stream processing by considering all data as a stream. Case studies highlighted in the 

scouting demonstrate successful applications of both architectures, emphasizing the choice between 

them hinges on the nature and requirements of the specific use case.  

The exploration of open-source frontend development frameworks represented the third dimension 

of this technological scouting. Open-source frameworks are fundamental for developers as they 

expedite the development process, enhance collaboration, reduce costs, and improve the 

maintainability and scalability of applications. A range of robust frameworks were presented at high 

level, including Angular, React, and Vue.js. These have demonstrated significant versatility, strong 

community support, and comprehensive documentation.  

Implementation examples were found from academic publications and were systematically collated 

and reported as part of this scouting. This data presents tangible evidence of the efficacy of the 

explored architectures and frameworks and provides an insight into how such technologies can be 

implemented. These reports serve also as examples on how potential challenges could be managed, 

by looking at previous implementations and logics.  

Each of the aforementioned elements, with their advantages and disadvantages, can serve as tools 

for the implementation of the IOP to be used within this project. However, their successful 

implementation demands a comprehensive understanding of the organizations’ unique needs and 

capabilities.  
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1. Intelligent Orchestration Platform Introduction 

1.1. Overall concept of the IOP  

The overall purpose of the Intelligent Orchestration Platform (IOP) in the ONE4ALL project is to 

deliver a secure and open-sourced platform that interconnects all digital and physical modules within 

the manufacturing supply chain (Figure 1). The IOP aims to gather real-time information from these 

modules and present it through user-friendly interfaces, improving the understanding among end-

users (managers and operators) about the production line and how to organise and control it. The 

platform covers various aspects such as sustainability, product quality, resource consumption, 

production activities, orders, and business analysis. It also incorporates a suggested decision-making 

strategy at different levels and throughout the supply chain, with both local and remote access. 

Additionally, the IOP integrates end-users' feedback into the loop, ensuring their active participation 

and involvement. 

 

Figure 1: IOP positioning-interconnections overview 

1.1.1. Positioning within ONE4ALL 

The IOP serves as a central hub within the ONE4ALL project, responsible for connecting and 

orchestrating modules throughout the manufacturing supply chain. By seamlessly integrating with 

diverse services and devices, it facilitates smooth communication and data flow. The IOP serves as a 

gateway for data intake, collecting and processing information from physical and digital devices 

within the supply chain. It leverages this data to enable the creation and operation of data-driven 

digital twins, providing valuable insights and empowering end-users in their decision-making process. 
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Additionally, the IOP acts as a central hub, extending its orchestration capabilities to RCPM. It 

receives information from collaborative robots, which constitute the physical part of the RCPM, and 

sends relevant data back to them, ensuring a bidirectional flow of information and enabling efficient 

collaboration between the IOP and RCPM for optimised operations. 

1.2. Purpose and objectives  

The purpose of the Intelligent Orchestration Platform (IOP) in the ONE4ALL project is to enhance 

the supply chain by improving end-user understanding, promoting effective decision-making, and 

facilitating the integration of smart technologies. The objectives of the IOP include improving end-

user understanding through real-time information presentation, assessing end-users in decision-

making through a self-learning system, providing support and resources, and facilitating overall 

comprehension of the IOP through a Software Development Kit (SDK). Additionally, the IOP aims to 

develop a data fusion pipeline for efficient collection, processing, and formatting of heterogeneous 

data. With a microservices-based architecture, the IOP enables flexibility, scalability, fault isolation, 

and efficient resource utilisation. 
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2. Technological scouting  

In this section, a technological scouting analysis is presented that centres around the exploration of 

industry 4.0 reference architectures and data architectures. In section 4.2.2 a general introduction on 

commonly used tools for the development and design of the IOP frontend is given. The focal point 

of our analysis was the requirement for the technologies to be open source. Our objective was to 

identify prior solutions that not only provide the benefits of openness and collaboration but also 

possess scientific documentation to support their architecture design and implementation, with a 

focus on robotic arms, collaborative robots, data architectures and integration of the Robot Operating 

System (ROS). 

To ensure the robustness and reliability of the identified technologies, we sought scientific and 

technical documentation that provided insights into the aforementioned topics. This documentation 

allows for a comprehensive understanding of the underlying principles, design choices, and key 

components of each technology. By assessing the scientific documentation, we gain valuable 

insights into the scalability, maintainability, and adaptability of the technologies, enabling informed 

decision-making regarding their suitability for the project’s requirements. 

Through a systematic approach, we have curated a selection of articles that describe open source 

technologies that meet the aforementioned criteria. The subsequent sections of this document will 

provide detailed profiles of each technology. 

2.1. Reference Architecture in Industry 4.0 

The advent of Industry 4.0 has brought about a significant change in manufacturing operations, 

necessitating the seamless interaction of end-to-end industrial systems. While many manufacturing 

companies are still grappling with the challenges posed by Industry 4.0, reference architectures have 

increasingly become adopted in different areas as guides for engineers on how to structure and 

operate their systems. Companies make varied experiences with these architectures depending on 

the specific use cases. However, there is currently no complete understanding of existing 

representative architectures. Therefore, there is the need to review and analyse existing reference 

architectures for Industry 4.0, assessing their suitability for facilitating Industry 4.0 procedures and 

solutions.  

 

In [1], the authors reviewed six different Industry 4.0 reference architectures, discussing their 

coverage, description, how to use them and different technologies and tools that can support their 

use. Of the six identified reference architectures, only five are taken into account in this deliverable, 

since IBM Industry 4.0 architecture is not open source.  

To set a standard for the coverage and comparison of Industry 4.0 reference architectures, all were 

mapped against the five levels of the industrial automation pyramid as a reference guide: 

 

1. Field Level: consisting of physical entities, including machines, devices, actuators, and sensors 

in the field or on the production floor. 

2. Control Level: represented by a PLC (Programmable Logic Controller) and/or a PID 

(Proportional–Integral–Derivative controller) controlling one single device at the field level) 

3. System/process Level: referred as SCADA (Supervisory Control and Data Acquisition), which 

controls several devices at the field level in a combined way through the output from multiple 

PLCs. 

4. Operation Level: consists of systems that monitor the entire manufacturing process from the 

raw materials to the finished product, also referred to as MES (Manufacturing Execution 

System). 



 

11 
 

D3.1 Technology scouting and IOP specifications 

 

5. Enterprise Level: consists of systems for integrated management of companies, also referred 

to as ERP (Enterprise Resource Planning). 

 

2.1.1. IIRA 

IIRA (Industrial Internet Reference Architecture - Figure 2) is 

a domain-independent, industry-driven architecture that 

includes manufacturing, healthcare, energy, smart city, and 

others, and has been developed by the US-led IIC (Industrial 

Internet Consortium1), which has invested in the worldwide 

adoption of IoT in the industrial context. It is one of the first 

architectures specifically targeting Industry 4.0 appeared in 

2015, about five years after the concepts of Industry 4.0, 

Industrial Internet, and smart factories had started to become 

popular. Emerging from accumulated experience in IoT 

systems, IIRA focuses on the functionalities required in the 

industrial domain, including business, operation, prognostics, 

optimisation, information analytics, and monitoring/control of 

devices. One peculiarity of this architecture is that it details 

technical issues, mostly reusing the experience from IoT 

system architectures.  

 

 

 
The IIRA architecture comprises 8 different modules, namely: 

 
• Business: addresses all functional logic to support business processes and activities of 

business functions. 

• Operation: addresses provisioning, management, monitoring, and optimisation of industrial 

control/automation systems. 

• Information: addresses the management and processing of data from other modules; 

transforming, persisting, and modeling or analysing data. 

• Application: responsible for the application logic to realise specific business functionalities. 

• Control: addresses the industrial control/automation systems receiving data from sensors, 

applying rules and logic, and exercising control over physical systems. 

• Physical systems: refers to machinery and devices on the shop floor. 

• Crosscutting Functions: addresses all functions that enable major system functions with 

specific characteristics of Industry 4.0 systems, like industrial analytics, intelligence/resilience 

control, distributed data management, and full connectivity. 

• Key System Concerns: addresses quality attributes, such as safety, security, resilience, 

reliability, privacy, scalability, and others, to achieve trustworthiness. 

 
IIRA is presented as a set of architectural viewpoints where the functional view specifically addresses 

the functional components, their structure and interrelations, as well as interactions with external 

elements of the environment. 

 
1 IIRA -> https://www.iiconsortium.org/IIRA/ 

Figure 2: Industrial Internet Reference 
Architecture graphical overview 

https://www.iiconsortium.org/IIRA/
https://www.iiconsortium.org/IIRA/
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2.1.2. RAMI 4.0 

RAMI 4.0 (Reference Architectural Model Industry 4.0 - 

Figure 3) is a domain-specific, government-driven architecture 

by a consortium led by the Association of German Engineers 

(VDI) and German Electrical and Electronic Manufacturers' 

Association (ZVEI) has designed RAMI. Like IIRA, it was one of 

the first architectures specifically designed to address 

Industry 4.0 requirements. To assure alignment with real 

industry needs, consortia of companies and research 

institutions were established to design, evolve, experiment, 

and adopt it.  

One peculiarity of this architecture is to put together different 

dimensions of the Industry 4.0 space and to describe all crucial 

components of Industry 4.0. It could be represented as a 

three-dimensional structure (Value stream, Hierarchy levels, 

and Layers), RAMI 4.0 is still based on international standards: 

IEC 62890 (for lifecycles of products and production) as well 

as IEC 62264 and IEC 61512. 

 

 

The RAMI 4.0 architecture comprises 8 different modules, namely: 

• Business Layer: addresses business strategy, business environment, and business goals. 

• Functional Layer: addresses all logical and technical functions of all assets, also enabling 

remote access and horizontal integration. 

• Information Layer: addresses the organisation of real-time/non-real-time data to provide a 

holistic view and information on physical objects, products and materials manufactured. 

• Communication Layer: addresses the communication between information and integration 

layers through a uniform data format combined with a means to make the data available. 

• Integration Layer: addresses the link between the physical and digital world by transforming 

and connecting the physical objects into the digital world. 

• Asset Layer: addresses physical objects, such as production equipment, product parts, 

documents and people. 

• Value Stream: addresses the management of lifecycles of products and production based on 

IEC 62890. 

• Hierarchy Levels: based on IEC 62264 and IEC 61512, plus three layers (Field Device, 

Product, and Connected World) to enable flexible systems/physical parts and their direct 

integration into the factory and with external partners. 

• ZigBee and Hadoop platform 

Figure 3: Reference Architectural Model 
Industry 4.0 graphical overview 
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2.1.3. SITAM 

SITAM (Stuttgart IT-Architecture for Manufacturing - 

Figure 4) is an academic, multi-layered architecture 

designed within several research projects led by the 

University of Stuttgart, Germany. Developed for the first 

time in 2016, it has the purpose of facilitation, which 

essentially means promoting the sharing and/or reuse of 

knowledge related to architect Industry 4.0 systems.  

This architecture focuses on integration/interoperability 

in smart factories by presenting three middlewares (for 

Integration, Mobile, and Analytics). The Integration 

middleware contains five buses to connect several 

systems to the entire product lifecycle, from product 

engineering to usage/support, as well as IT systems, 

physical devices, and other data sources.  

 

 

 

The SITAM architecture comprises 5 different modules, namely: 

• Service Composition & Access: addresses the composition and access to value-added 

services by app composer and app marketplace. 

• Value-added Services: addresses the services that create new value for the business by 

packaging and combining functionalities of other middlewares. 

• Analytics Middleware: addresses manufacturing-specific analytics components for data-

driven factories. 

• Mobile Middleware: addresses the provision/acquisition of mobile information to develop 

and integrate manufacturing-specific mobile apps. 

• Integration Middleware: addresses all services and corresponding data exchange to 

provide mediation and orchestration functionalities. 

Regarding enabling tools, the authors report a lack of information about specific technologies. This 

lack is unfortunately confirmed, since no specific use case was found that specifically addressed the 

usage of the SITAM architecture. 

 

Figure 4: Stuttgart IT-Architecture for Manufacturing 
graphical overview 
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2.1.4. IVRA 

IVRA (Industrial Value Chain Reference Architecture - Figure 

5) is a conceptual architecture maintained by the Industrial 

Value Chain Initiative (2018), Japan. IVRA focuses on an 

overall view of how a smart factory could detailed into its 

components, and how its modules could be combined to 

achieve the general functions of manufacturing.  

 

The IVRA architecture comprises 3 different modules, namely: 

 

• Business Layer: addresses the management of 

business strategies and products/services. 

• Activity Layer: addresses all concrete activities 

performed by people, machines, and software. 

• Specification Layer: addresses the engineering to 

transmit, process, and reuse knowledge and know-

how. 

 

The Business Layer itself can be represented as a cube composed of three views:  

• asset valuable for manufacturing units: plant, product, process, and personal 

• management: regarding quality, cost, delivery, and environment  

• activity: the activities Plan, Do, Check, and Action  

  

Figure 5: Industrial Value Chain Reference 
Architecture graphical overview 
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2.1.5. LASFA 

LASFA (LAsim Smart Factory - Figure 6) is a two-dimensional 

architecture proposed by the University of Ljubljana, Slovenia 

in 2019. LASFA is based on RAMI 4.0 layers and presents four 

building blocks (Business Process Management; MES + Digital 

Twins; Digital Twins for processes, logistics, and products; and 

Control process communication Production processes), which 

contain well known systems (e.g., ERP, MES, and PLM), digital 

twins, and the information/ data flow among them.  

The LASFA architecture comprises 4 different modules, namely: 

• Business Process Management: provides an 

integrated and continuously updated view of core 

business processes for business planning and 

strategy. 

• MES + Digital Twins: provides the real-time tracking 

of the transformation of raw materials to finished 

goods, control of multiple elements of the 

production processes, and support for the 

manufacturing decision makers. 

• Digital Twins for processes, logistics and products: 

provides the digital twins of factory processes, 

including local processes, logistics, production line, production cell, warehouse, and 

workplace. 

• Control-process communication + Production processes: gives an overview of machinery, 

sensors, actuators, and other devices on the shop floor 

2.1.6. Architectures comparison at general level 

Reference architectures have already made important contributions, mainly regarding the overall 

structure of Industry 4.0 systems. The complex and interconnected nature of Industry 4.0 systems 

can be observed trough this comparison (Figure 7), which sometimes transcend organisational and 

Figure 6: LAsim Smart FActory graphical 
overview 

Figure 7: Comparison of reference architectures in industry 4.0 
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technical boundaries, thus leading to reference architectures that are broader, covering everything 

from the business level to technical issues.  

Looking at the overall scenario, there is a large trend towards the reuse of successful IoT experiences, 

practices, and technologies, which has been explored as an efficient means to connect physical 

objects (e.g., machines and devices on shop floors) to the Internet, taking then advantages of its 

benefits and addressing its drawbacks such as the breaches of privacy in IoT.  

All architectures cover the different levels of the pyramid from the business to the shop floor levels. 

Moreover, modules of the architectures sometimes cover more than one level of the pyramid, 

reinforcing the nature of Industry 4.0 systems in which there is no clear distinction among these 

levels. IIRA, RAMI 4.0, and SITAM present modules crosscutting and covering all levels, while other 

architectures have modules distributed in more than one.  

While IIRA and RAMI 4.0 are among the most popular and frequently mentioned architectures, all 

analysed architectures share the issue of a clear and punctual standardisation method. Moreover, 

IIRA, SITAM, and LASFA also have the purpose of facilitation, which essentially means promoting the 

sharing and/or reuse of knowledge related to how to architect Industry 4.0 systems. Architectures 

involving consortia (IIRA, RAMI 4.0, IVRA) focus on multiple organisations, to be established and 

adopted; while academic architectures (SITAM and LASFA) have usually focused on a single or a 

couple of organisations. 

It can be noticed that only IIRA, RAMI 4.0, and LASFA address digital twins as reference architectures.  

RAMI 4.0 and IVRA present high-level views to communicate what smart factories should/could 

encompass. While RAMI 4.0 is complemented with a textual description of its view, IVRA presents 

other overall views detailing each layer, together with a textual description. These two architectures 

do not explicitly describe how the layers (and their individual elements) could be interconnected. 

Hence, both architectures require considerable decisions and refinements to be made when used in 

a given industrial project. 
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3. Tools and Practical applications survey 

3.1. General approach for Industry 4.0 transition  

P. K. Illa and N. Padhi identify and describe general key areas that should be encompassed in an 

Industry 4.0 architecture in their research [2]. The authors do not address any specific 

aforementioned architecture but try to give a general insight for the configuration of an Industry 4.0 

architecture.  

The identified areas are reflected in Figure 8. The main blocks are: Manufacturing Applications, 

Enterprise Applications, IoT Platform, Data Visualization and Control. For each of them, a detailed 

description of the building blocks is given. The description is reported in this deliverable, since it could 

give an important insight for the development of the IOP structure, independently from the adopted 

architecture.  

 
• Manufacturing Applications 

o Manufacturing Execution System (MES): is an OLTP (Online Transaction Processing) 

system for the shop floor. It records all the transactions at the shop floor such as 

material movement, consumption, rework, scrap etc. It can be a packaged application 

or even a home-grown application. Packaged MES are off-the-shelf products available 

in the market and are then customised to meet the needs of a plant. Sometimes certain 

factories have very specific needs, so they develop their own MES internally. Either 

approach has its own advantages and disadvantages, and the factory needs to evaluate 

what is best for it. 

o Programmed Logic Control (PLC): controls the coordination among the equipment, 

process steps and operators to produce finished goods. Usually, more than one PLC is 

present in the plant, which is managed by a Master PLC.  

Figure 8: Industry 4.0 usual organisation architecture 
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o Open Platform Communications (OPC): is the Middle Layer which facilitates 

communication between MES and PLC. MES logs all the transactions performed on 

the shop floor and PLC guides equipment to perform process steps. MES must 

continuously communicate with the PLC to record the transactions in real-time. 

Middle layer such as OPC or SECS/GEM facilitate this communication.  

o Supervisory Control and Data Acquisition (SCADA): is a supervisory system which 

controls equipment, processes and devices. It interacts closely with equipment, PLCs 

and MES to perform "supervisory" role on the shop floor. 

 

• Enterprise Applications 

o Enterprise Resource Planning (ERP): is a Packaged OLTP (Online Transaction 

Processing) system. It provides a consolidated platform to operate multiple business 

processes such as Manufacturing, Source-to-Pay, Order-to-Cash, Planning, 

Accounting, Costing, Consolidation, Intercompany transfer etc. 

o Product Lifecycle Management (PLM): is a centralised repository for SKUSs (Stock 

Keeping Units).  

o Customer Relationship Management (CRM): facilitates customer ordering process. It 

provides a platform to manage quotes and sales orders.  

o Master Data Management (MDM): provides the up-to-date information of critical 

data such as customer, location, product etc. across various system in the organisation.  

o Supply Chain Management (SCM): normally is a packaged application with a focus on 

Supply Chain Planning, Forecast Management and Production Planning.  

 
• Data Visualisation and Control 

o Operational Dashboard: offers real-time visibility of all the applicable sensors, devices, 

and machinery.  

o Control & Governance: monitors and controls the machines or sensors from 

Command center based on the real-time monitoring or anomaly detection. 

o Data Analytics: analyses collected data to identify patterns or trends. Predictive and 

preventive measures are applied through data analytics and machine learning 

algorithms. 

o Portals & Mobile enablement: provides the analytics and metrics as graphical user 

interface for consumers applications or mobile devices. 

o API Gateway: exposes the functionalities through APIs (Application Programming 

Interface) to enterprise applications for demand forecasting, inventory management, 

traceability and even to participate in BPM (Business Process Management) 

orchestrations. 
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• Since the IoT Platform is the core that transforms a factory to a smart factory, and it consists 

of several layers and components, the authors give a more detailed description of each 

component, graphically represented in Figure 9. 

o IoT Gateway: provides connectivity to sensors and equipment. It mainly deals with 

communications, protocols, security, infrastructure and network topology. The devices are IP-

enabled and uniquely identified in the network. Sensors in the factory are generally wired 

using ethernet cables (TCP/IP) or connected through wireless (RFID/ZigBee/Bluetooth). As 

the cost of sensors and wireless protocols are rapidly decreasing, the sensors have become 

so economical and ubiquitous, they can even be scaled with wireless mesh networks. 

o Edge Compute: consists of gateway servers or router services that performs real-time 

computing necessary to make quick local decisions on data streams for low-latency controls. 

The decision services are integrated with Device Manager to transmit control parameters to 

PLC or OPC for controlling and optimising system operations. Edge computing happens closer 

to the devices and decisions are made local to the equipment for low-latency operations, 

without waiting for decisions from the subsequent layers of Data Lake. 

o Data Ingestion: data is streamed from multiple source applications into Data Ingestion Layer, 

where the data is processed and further transformed. The data from multiple sources with 

different formats (i.e., timeseries, event streams, log streams, structured, semi-structured, 

unstructured) are transformed into enterprise's canonical or standard formats. Data 

serialisation format (i.e., protobuf, avro, thrift) is selected depending on speed and 

consistency. Data quality and harmonisation should also be taken into consideration 

depending on how well the data is properly maintained in the source applications. Depending 

on the volume of data, reusable data pipelines can be established using Apache Kafka cluster 

or Flume to receive massive amounts of data. 

o Data Lake: data is stored in the distributed HDFS cluster, RDBMS (i.e., Oracle, MySQL, MS 

SQL) and NoSQL (i.e., Cassandra, Mongo) database depending on the type of data and usage. 

Apache Spark is used for real-time analysis and it is several times faster than MapReduce. 

Data is stored as relational format using Spark SQL for data processing of structured data. 

Figure 9: IOT platform architecture 
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Semi-structured or Unstructured data is processed and analysed with Spark scripts that are 

developed using scala, python or java. Spark in turn offers out-of-box Machine Learning (ML) 

libraries to train and test the data sets, establish reusable pipelines and then apply prediction 

or clustering algorithms. 

o Data Integrations: enterprise applications and Manufacturing applications are usually 

connected through Middleware and ETL tools. The data from these different enterprise 

systems are extracted through Middleware or ETL tool to the Data Lake or Data Ingestion 

layer. The data is usually processed through a series of stages known as Data Staging area, 

where the data is enhanced, transformed and enriched to a standardised and shareable form. 

In Data Staging area, the information is usually joined and combined with multiple IT 

applications to generate canonical models before feeding to Data Lake.  

 
The authors also describe enabling technologies, together with the advantages and disadvantages of 

establishing an IoT platform using: OSS (open-source software), commercial distributors and using 

PAAS (Platform-as-a-service). The second and the third options are both based on outsourcing to 

software provider companies. Since the purpose of this deliverable is to explore open-source 

solutions, only the first option is reported below. 

Open-source software: in this approach, OSS is used to establish all the necessary components in the 

organization’s data center. OSS Apache Hadoop framework, along with its plethora of modules, is 

used to establish the IoT platform. Hadoop Distributed File System (HDFS), HBase and NoSQL 

databases (Cassandra or MongoDB) are the usual choice for data storage. For data computations, 

Apache Spark and MapReduce are used. Apache Flume and Sqoop are used for data movement and 

connectivity from different sources such as machine logs, enterprise databases and IT applications. 

Apache Kafka and Storm are used for real-time data streaming from sensors. Apache Mahout, MLLib 

and Spark ML are used for applying machine learning algorithms. In Table 1 are presented the 

advantages and disadvantages of this approach. 

Table 1: OSS Advantages and Disadvantages 

Advantages Disadvantages 

Solution specific to the organization’s 
requirements can be achieved. 

Requires strong expertise in wide variety of 
technologies and skills 

Offers high level of flexibility in terms of 
achieving project goals, change and 

customisations. 

Involves high level of complexity and requires 
huge effort as the solution is entirely home-

grown. 

Complete ownership of data, product stack 
and processes 

Hindered by the challenges of being an early 
adopter and prepare to discover issues as the 

products mature. 

Completely driven by organisation's vision, 
expertise and execution 

 

Benefit from early adoption of technology 
trends, raise as technology leaders and capture 

market opportunities before rest of the 
industry and its competitors catches-up 
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3.2. RAMI 4.0 for robotic arm control 

In recent studies, such as the one published by T. Lins et al. [3], there is presented a customisation of 

RAMI 4.0 for robotic arms applications. The authors focused on the adoption of various technologies 

in order upgrade industrial equipment (robotic arm) to Cyber-Physical Production Systems (CPPS). 

The issue of standardisation is addressed with the support of a custom platform that implements 

features to work independently of the type of equipment. According to the authors, the peculiarity 

of the RAMI 4.0 architecture for this specific application is its Administration Shell. The 

Administration Shell is the interface that connects the physical object to the industry 4.0 and is 

responsible for storing all the data and information about the asset. It also servs as a standardised 

interface for network communication that can integrate passive objects. 

Each physical object has its Administration Shell, and the connection occurs through the 

communication offered by Industry 4.0, with the Administration Shell forming the digital part and the 

physical object forming the real part. 

In order to integrate the CPPS in an Industry 4.0 environment the following functional components, 

divided in infrastructure, communication and application, are taken into account: 

• Infrastructure 

o Embedded Board Component (EBoard-C): must support various connections, buses 

and interfaces, such as General-Purpose Input/Output (GPIO), Pulse Width 

Modulation (PWM), serial ports and Universal Serial Bus (USB), as well as support for 

IoT devices. The EBoard-C also has the function of identifying the IoT devices and 

scanning the signals collected by the IoT devices. 

o IoT Devices Component (IoTDev-C): works in conjunction with the EBoard-C 

component, where the IoT devices (such as cameras and other sensors) are installed, 

providing also the packages that must be activated to detect the IoT devices. 

• Communication 

o Network Component (NET-C): responsible for connecting industrial equipment to the 

Industry 4.0 network. The purpose of this component is to select the right interface 

and driver to establish the connection with the Industry 4.0 network.  

o OPC Component (OPC-C): this component is divided into two sub components: the 

Server-M module and the Equipment-M module. The Server-M module is responsible 

for connecting the CPPS to OPC servers. The Equipment-M connects CPPS to the 

industrial equipment. During the routine, the Server-M module scans the network in 

search of the OPC-UA servers. After detecting the service, the Equipment-M module 

scans for existing industrial equipment. The servers and collected equipment are saved 

in a database so that the industry can use the information. In the Equipment-M 

module, besides to collect the information, it is possible to carry out operations of 

writing, changing equipment variables, such as enabling and disabling functionalities. 

o SDN Component (SDN-C): the SDN-C component enables two modules in the CPPS. 

The first module is the Controller-M, which allows CPPS to manage the network 

resources, as well as to mount the data plan and send to the commuters. The second 

module, the Commuter-M allows the CPPS to receive the data from an SDN controller 

to decide to route CPPS packages. 
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• Application 

o Database Component (DB-C): is the component responsible for connecting CPPS to 

a database, supporting several databases. This component has two modules: 

ServerDB-M, responsible for making a database server available, to storing 

information for quick and short-term responses, while the module ConnectDB-M is 

responsible for the connection with external databases. Usually present in a cloud, the 

module performs a network scan and connects to the database to store information 

that requires long-term processing or storage.  

o Remote Access Component (RA-C): responsible for releasing remote access to the 

CPPS, making it possible for the user to access the CPPS externally.  

o Web Service Component (WEB-C): responsible for making a Web server available.  

o Monitoring Component (MON-C): responsible for collecting CPPS information, and 

with the help of the WEB-C and DB-C components, make available some information 

CPPS to users, such as status, connectivity, components used, etc.  

o Cloud Component (CLOUD-C): responsible for making support packages available to 

cloud computing. This component has 2 modules: the Node-M module, which is 

responsible for providing the necessary packages for CPPS to become a cloud node, 

and the Migration-M module responsible for assisting and managing migrations with 

legacy software. 

These functional components are integrated into the seven layers of the RAMI 4.0 architecture as 

follows and represented in Figure 10. 

• Asset Layer: contains the 

components of the infrastructure 

with the EBoard-C with functions 

of the board and the IoTDev-C 

activating the IoT devices. 

• Integration Layer: contains the 

component OPC-C, responsible 

for the digitisation of the 

information of industrial 

equipment, as well as EBoard-C, 

with the function that digitises the 

information IoT devices. 

• Communication Layer: contains 

the NET-C component, which uses 

an interface installed in the board 

to connect to the communication 

network of the Industry 4.0, and 

the SDN-C component to actively 

connect the CPPS on an SDN 

network. 
Figure 10: Functional components integration within RAMI 4.0 

Architecure layers 
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• Information Layer: contains the DB-C and WEB-C components, with the storage, search and 

availability of the CPPS information. 

• Functional Layer: contains the MON-C components, which monitor the operation of the 

CPPS, as well as the resources and the communication.  

• Business Layer: contains the Cloud-C component that through cloud computing provides 

means for composing, organising and managing services of Industry 4.0, while the RAC 

component offers remote access for users to manage CPPS resources. 

With the presented integration strategy, the authors have developed a custom platform for the 

integration of robotic arms in an Industry 4.0 scenario (Figure 11). 

The platform consists of three interconnected structural layers: Infrastructure, 

Network/Communication and Application.  

• The Infrastructure Layer provides all support and interconnection of the components with 

the industrial equipment.  

• The Communication Layer makes access to the industrial networks freeing the access of these 

networks to the other functional components.  

• The Application Layer is responsible for the interaction of the CPPS functional components 

with the components present in the Industry 4.0.  

Each functional component has direct access to the information, and functionalities of the other 

components. 

In the Infrastructure Layer, through the EBoard-C component, the platform has support for several 

embedded boards, as well as packages to support the IoT devices. In order to achieve interoperability 

of the platform with the various embedded boards in the market, the implementation of the CPPS 

Retrofitting components used primarily the Python language. In order to attend to the IoT devices on 

the platform, the IoTDev-C component supports various packages and drivers, such as the GPIO and 

PWM packages.  

In the Communication Layer the NET-C component of interfaces supports for connection with the 

industry 4.0. The interface may be native to the board embedded or used through a dongle. According 

to the network used in the industry, the configuration is made. Therefore, the platform detects the 

communication of the Industry 4.0 following the configuration made and then, connects CPPS in 

Figure 11: Practical application of RAMI 4.0 in a platform 
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Industry 4.0. The OPC-C component identifies industrial equipment via the OPCUA protocol, which 

can be done automatically or manually. First, the OPC servers are detected. Then, for each OPC 

server the variables of each equipment of the industry are collected. With the detection of IoT devices 

and industrial equipment, the platform integrates the communication, being able to manage all the 

devices and make decisions based on the information collected by the platform. The SDN resource 

provided by the SDN-C component adds CPPS to the commuter and network controller functionality, 

making CPPS able to make decisions regarding packet forwarding and network resource 

management. On the platform OpenVswitch is available, which is an open code implementation of 

an SDN commuter and the SDN controllers. On the platform, it is possible to enable one or both 

features at the same time. 

In the Application Layer, the platform provides access to several databases through the DB-C 

component, which contains some client software, among which we can mention MySQL, PostgreSQL, 

SQLite, and Open database connectivity (ODBC), MongoDB, NoSQL MySQL. In order to guarantee 

the CPPS to have an independent Web service, the platform offers the option of enabling an Apache 

server to manage the information generated by the CPPS itself through the WEB-C component. 

Monitoring of CPPS and CPPS-connected devices is performed by the MON-C component, which 

collects the information, saves it to the database and makes it available through the web service. The 

CLOUD-C component allows integration with Ubuntu Cloud, Microsoft Azure, Opennebula and 

Eucalyptus. In addition to typical applications in Industry 4.0, the cloud can receive native applications 

of the equipment through migration. The RA-C component provides remote access with the Virtual 

Network Computing (VNC), Secure Shell (SSH) and Remote Desktop Protocol (RDP), in which all 

available protocols can be enabled or only one of the user's preference.  
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3.3. IIRA for Autonomous Mobile Robots 

In [4] the authors propose an architecture, based on the IIRA architecture, for the implementation of 

robotic platforms with the purpose of internal logistics. The proposed architecture is specifically 

designed for the management of Autonomous Mobile Robots (AMR), which represent a collaborative 

approach to internal logistics automation. The reference architecture is based on Robotic Operating 

System (ROS), and aims to meet the requirements of small and medium-sized companies. 
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The definition of the reference architecture is based on industry standards and best practices for 

open robotics, and it follows the recommendations of the ISA/IEC 62443 standard on security in 

industrial control systems. Specifically, the different levels are described as follows:  

• Level 0 - Industrial Level: this level groups together the physical components of industrial 

systems, mainly actuators and sensors (cameras, laser scanners, encoders to detect products). 

The selected base hardware to implement the reference architecture comprises ROS 

compatible logistic robots.  

• Level 1 - Control Level: this level contains the system-level control elements of the 

components at Industrial Level. In a robotic platform, this level groups the Human-Robot-

Interaction modules, the modules to model the environment, including humans, and the 

modules to control the robot:  

o human navigation and motion planning  

o actuator control 

o movement control 

Modules for data fusion to enable the integration of different indoor positioning systems are also 

located at this level. From a technical point of view, the modules at this level are implemented as ROS 

modules, interconnected in a level-1 ROS network, deployed in an edge platform or on-board 

computer with GPU acceleration to achieve the required performance. This is particularly important 

for modules that rely on neural networks, like Yolov4 object detection and human activity prediction. 

The performance of these modules has been successfully tested using a NVIDIA Jetson module. 

Communication with higher layers is implemented through ROS bridge modules (communication 

modules) that act as secure conduits to exchange information with components of the Operation 

Level, using: 

o Message Queue Telemetry Transport Protocol (MQTT)  

o OPC Unified Architecture (OPC UA) protocol 

• Level 2 - Operation Level: this level groups together the operation and supervision systems, 

such as operator terminals/consoles and monitoring applications. In a robotic platform, this 

level groups the main functional blocks of the fleet management system, including functions 

to control and orchestrate the robotic fleet, calculate Key Performance Indicators (KPIs) for 

logistic operations monitoring, as well as functions to enable communication between Control 

Level and higher levels according to security specifications for Industrial Control Systems. 

From a technical point of view, these modules are microservices deployed in a microservice 

orchestration platform like Kubernetes. The machine-to-machine communication module 

provides an endpoint (e.g. MQTT broker) used to send control commands to and receive 

status feedback from the robotic fleet. The information is stored in a time series database 

microservice to enable robot tracking and tasks traceability. To facilitate vertical integration, 

this level implements microservices to manage master data and expose management 

functions to the Enterprise Level services or external systems through a management 

Application Programming Interface (API).   

• Level 3 - Enterprise Level: this level contains the equipment and systems to provide support 

to the company's business processes, such as ERP. This level of the reference architecture 

groups functional blocks to implement Role Based Access Control to the FMS (Flexible 

Manufacturing System) functions, including federation with external authentication and 

authorisation services, as well as functional blocks to integrate with other enterprise systems, 
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like the ERP, MES/MOM, or WMS integration. From a technical point of view, these functions 

are mapped to microservices. Communication with Operation Level functional blocks is 

achieved through the management API, so that Operation Level and Enterprise Level services 

are decoupled to achieve inter-level isolation.  

• Level 4 - Supply Chain Level: this level is introduced to extend the solution to the supply chain 

level, enabling collaboration among supply chain collaborators. This level groups advanced 

services to enable trustable supply chain traceability using blockchain technology, data 

services to enable the integration and synchronisation of data distributed across different 

platforms, supply chain operations planning services, and simulation services to simulate 

internal logistic processes.  

From a security perspective, to adequately protect the components at the Industrial Level, the 

authors suggest the adoption of a "Defense In Depth" strategy. This defense strategy is based on the 

establishment of different security controls to protect critical systems at lower levels. 

Communications must always be made from the lower levels to the upper levels (communications are 

not allowed to be initiated in the opposite direction), and all communications between levels must 

use secure, properly protected conduits (security paths  between two levels). 

3.4. Specific Data Architectures and practical applications 

3.4.1. Kappa Architecture for the applications of online ML on data streams 

The authors of [5] proposed an architectural concept for the applications of online Machine Learning 

on data streams based on the Kappa Architecture in conjunction with the use of container-based 

microservices. The overall structure of the architecture and all the modules are presented through a 

diagram block in Figure 12. 

 

 

Figure 12: Kappa Architecture in practice 
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The suggested architecture specifically addresses the management of a high number of data streams 

in an IoT environment, and comprises following components: 

• Streaming Platform: is the central component of the architecture, which handles data 

collection as well as distribution and is composed of different sub components. 

o Log Data Store: ingests the data streams using IoT middleware solutions and saves 

them. The messages in these data streams as well as the ones, which have already 

been processed in the streaming platform, are saved in sequential order using topics 

and partitions to organise the data and to enable parallel access. 

o Serving Database: if needed, data may be pushed to this component, thus allowing 

ad-hoc queries on the data. Together, the Log Data Store and the Serving database 

are used for mass storage of data. 

o Analytics Operators: are small, single-purpose microservices, encapsulated using 

container technology (Docker4) that perform data processing in the streaming 

platform. Analytics operators may be composed into analytics pipelines, linking their 

inputs and outputs, allowing for complex data transformation as well as aggregation 

and application of advanced statistical and ML-based methods.  

 

• Orchestration Platform: acts as a workflow management. It implements the capabilities to 

develop, manage and deploy analytics pipelines based on predefined analytics operators. This 

component it's also composed of different sub components: 

o Flow Engine: is the main subcomponent of the orchestration platform. It offers 

different adapters to interface with container-orchestration and management 

systems, such as Kubernetes or Rancher, and deploys analytics operators based on 

analytics flows. These are flow-based graphs, which describe the data flow between 

the inputs and outputs of analytics operators.  

o Operator Repository and Flow Repository: all analytics flows are saved in the flow 

repository, whereas analytics operators metadata are saved in the operator repository.  

o Flow Parser: is called from the Flow Engine after a user requests the instantiation of 

an analytics flow. It delivers the the corresponding deployment data, including 

analytics operators to be deployed as well as their configuration in terms of input data 

mapping. The deployment data is composed by the Flow Parser using analytics flow 

data from the Flow Repository and analytics operator metadata from the Operator 

Repository. 

o Pipeline Registry: in this component, new analytics pipelines (composed by Analytics 

Operator containers and registers) are started by the Flow Engine. A single Analytics 

Operator always subscribes to at least one topic with IoT data, which is saved in the 

Log Data Store of the Streaming Platform and merges data streams if needed. After  it 

has processed a message of a data stream, an Analytics Operator writes the resulting 

message back to the Log Data Store into a separate topic. Consequently, it is possible 

for external applications to subscribe to these topics and receive streams of processed 

data at all stages of an analytics pipeline. 
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The entire architecture is prototyped entirely relying on open-source software, for instance: 

• The components of the Streaming Platform are built using Apache Kafka and its software 

ecosystem. 

• Analytics Operators are written in Java. To ensure their integration with the orchestration 

components, a Java library based on Kafka Streams was developed. 

• The Serving Database was built using InfluxDB. 

• The components of the Orchestration Platform are developed using Go and Python and 

expose their functionalities via REST-based CRUD endpoints. 

• The metadata is saved on document-oriented database systems, e.g. MongoDB. 

• The fronted application was built using Angular. Relying on flow-based notation, this graphical 

tool can be used to design analytics flows and wire analytics operators without the need to 

write programming code. 

• Since the implementation of ML algorithms in a large number of analytics pipelines poses a 

problem in terms of the availability of processing resources, online ML algorithms where 

chosen. Their main advantage is, that the processing time does not increase with growing data 

sets. Combining this type of algorithm with the kappa architecture approach allows for highly 

scalable data processing while still keeping its flexibility in terms of data re-processing and 

changing analytics pipelines at consumer level. 

• In order to use online ML, a new Analytics Operator, which provides online ML capabilities, 

was implemented. This Analytics Operator is a combination of the Training and Inference 

Engine. Additionally, the current model state is saved in the Analytics Operator, negating the 

need for an external model storage. Monitoring & Evaluation of the utilised ML algorithm is 

achieved by writing the corresponding data into the processed messages. Therefore, no 

external services are needed.  

3.4.2. Lambda Architecture for real-time visualisation of sensor data in Smart Manufacturing 

In [6] the authors propose an approach, based on the Lambda Architecture, for real-time visualisation 

of sensor data in smart manufacturing. In Figure 13 the Lambda Architecture for this practical 

example is presented graphically through diagram blocks. 

 

 

Figure 13: Lambda architecture in practice - real-time visualisation of sensors 
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The proposed lambda architecture consists of following main modules: 

• Sensor network: consists of sensor nodes deployed throughout the machines to measure the 

status of the machines such as, machine on/off, pace in, pace out and fault/error. 

• ERP data integration: contains details about products, job executions and work calendar. 

• Integration of other external data: may include indoor temperature, humidity, etc. 

• Master data storage layer for persistence: The data transmitted by the sensors is streamed 

into the master data storage (MongoDB) by Phoenix controller. The Phoenix controller 

captures data (ranging from 1 to 10 times per second) from the sensor network and submits 

the data to MongoDB. The controller submits the data of a sensor in MongoDB, only if there 

is a change in the state of the sensor. If there is no change in the state of the sensor the value 

will not be stored. Further, external data such as ERP data, is also submitted to the master 

data storage. The sensor data (JSON format) contains three attributes. The first three rows in 

the sensor data snapshot read as follows:  

o Timestamp: represents the date and time of the sensor data acquisition.  

o Value: corresponds to the state of the binary sensor (either TRUE or FALSE)  

o Port: indicates the sensor number.  

Similarly, the ERP data snapshot reads as follows:  

o Planned start and stop: represent the planned job execution date and time. 

o Actual start and stop: denote the actual job execution data and time.  

o Item-id: identifies the product that is being produced.  

o Machine-id: represents the machine  

o Name: represents the type of product being produced.  

A custom-built web application programming interface (Dolle API) allows for access to the sensor and 

external data from the master data storage by means of an HTTP GET request to provide the data to 

the speed layer for processing. 

• Speed layer: runs on the Apache Storm platform and provides real-time views. 

• Batch layer: runs on the Hadoop MapReduce platform and delivers precomputed batch 

results. 

• Serving layer: consists of a SQL Server and stores the output from the speed and batch layers. 

The real-time views are directly streamed to the dashboard for real-time visualisation using Dash 

(Python framework for building web applications). The real-time views are also delivered to the 

serving layer with some latency for near real-time visualisation.  

Le logic and steps behind the production monitoring are the following: 

1. Read the sensor data from the master data storage 

2. Feed the data to the Speed Layer 

3. Once in the Speed Layer, following operations are performed on the data: 

o Filtering according to the Values (TRUE or FALSE) 

https://hexdocs.pm/phoenix/Phoenix.Controller.html
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o Aggregation of the port values in key-value pairs 

o Display on the dash board the aggregated values 

o Storage of the aggregated values in the Serving Layer (SQL Database) for near real-

time visualisation 

o Reset the key-pairs to zero 

The implemented architecture adopts also Machine Learning models to analyse data and find 

production anomalies in real-time. To do so, the incoming real-time sensor data is compared to 

standard patterns and an alert is raised when some abnormal event is predicted to happen. The 

proposed algorithm uses the Batch Layer to train the model to detect abnormal patterns. The 

MapReduce job runs at predefined intervals and updates the coefficients of the pattern detection 

models in the Serving Layer. The speed layer reads the incoming streaming data from the MongoDB 

and detects abnormal patterns by applying a pattern detection algorithm, which dynamically uses the 

latest calculated model coefficients obtained from the Serving Layer. The pattern detection algorithm 

choose by the authors is an Auto-Regressive (AR) model with varying coefficients.    
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4. Intelligent Orchestration Platform 

The Intelligent Orchestration Platform (IOP) aligns with the principles and concepts of the Industrial 

Internet Reference Architecture (IIRA) and RAMI 4.0. It serves as a foundational infrastructure layer 

for integrating and managing diverse technologies and systems in industrial environments. The IIRA 

emphasizes interoperability, security, and connectivity, which the IOP supports by facilitating the 

integration of different technologies and ensuring efficient data exchange and collaboration. 

Similarly, RAMI 4.0 focuses on digitizing and networking industrial processes, and the IOP leverages 

its concepts to create a scalable and flexible infrastructure. By incorporating Cyber-Physical Systems 

(CPS), IoT devices, and other components, the IOP optimizes the management and control of 

technologies within industrial environments. This allows for the seamless integration of diverse 

systems and enhances overall efficiency. 

The IOP's data and ML architecture follow the principles of the IIRA and RAMI 4.0. The data 

architecture enables efficient collection, storage, and processing of industrial data, ensuring 

interoperability and easy integration from various sources. The ML architecture within the IOP adopts 

a flexible approach, accommodating both the Kappa and Lambda architectures. This allows for real-

time data processing, comprehensive insights, and supports decision-making processes in industrial 

systems. 

4.1. IOP Data & ML architecture  

The IOP utilises a data and machine learning architecture to process and analyse data, enabling 

intelligent decision-making. Integrating data ingestion, storage, processing, and machine learning 

capabilities empowers organisations to leverage their data effectively for improved performance and 

decision-making.  

In the constantly evolving world of big data processing, two prevalent paradigms have emerged: the 

Kappa and Lambda architectures. Both architectures are designed to process large volumes of data 

and provide actionable insights in real-time or near-real-time, although they approach this goal in 

distinct ways. 

4.1.1. Kappa vs Lambda 

Kappa Architecture is a software architecture used for processing streaming data. The main premise 

behind the Kappa Architecture is that it can perform real-time and batch processing, especially for 

analytics, with a single technology stack. It is based on a streaming architecture in which an incoming 

data series is first stored in a messaging engine like Apache Kafka. From there, a stream processing 

engine will read the data, transform it into an analysable format, and then store it in an analytics 

database for end users to query. 

The Kappa Architecture supports (near) real-time analytics when the data is read and transformed 

immediately after it is inserted into the messaging engine. Enabling recent data quickly available for 

end-user queries. It also supports historical analytics by reading the stored streaming data from the 

messaging engine later in a batch manner to create additional analysable outputs for more types of 

analysis. 
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Figure 14: Kappa architecture simplified overview 

Lambda Architecture. A data-processing architecture designed to handle massive quantities of data 

by taking advantage of both batch and stream-processing methods. Lambda architecture includes 

batch, speed, and serving layers. This approach enables processing data in real-time but also easy re-

processing of batched static datasets. 

This approach attempts to balance latency, throughput, and fault tolerance by using batch processing 

to provide comprehensive and accurate views of batch data while simultaneously using real-time 

stream processing to provide views of online data. 

 

Figure 15: Lambda architecture simplified overview 

In conclusion, both Lambda and Kappa architectures are viable for managing vast amounts of data in 

real-time. However, the specific needs and priorities ultimately determine the choice between them. 

The Lambda architecture's strength lies in its fault-tolerance and scalability, making it ideal for 

situations demanding rigorous data handling and historical data analysis. Still, it brings a level of 

complexity in setup and configuration that might not always be suitable. 

On the contrary, with its simplicity and ease of use, the Kappa architecture provides an appealing 

option for scenarios where real-time processing is a key priority and data loss is not a major concern. 

Kappa also has the advantage of potentially delivering superior performance, even though it might 

not offer the same level of fault-tolerance as Lambda. 

Given these considerations, it has been decided to initially adopt the Kappa architecture for its 

simplicity, given our current requirements. Furthermore, while it might not encompass the full range 

of capabilities the Lambda architecture provides, it still utilises the same core technologies, thus 
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making future transitions less challenging should we ever need to introduce a Batch layer for more 

rigorous data handling. 

The strengths of both these architectures lie in their shared technology base, meaning that if our 

needs evolve, it is possible to switch from Kappa to Lambda without substantial reinvestment in new 

technologies. This approach allows us to start simple with Kappa and remain flexible for future 

adaptations, assuring that we are well-prepared to handle any shifts in our data processing needs. 

4.1.2. IOP backend architecture 

The backend architecture of the IOP following a Kappa or Lambda architecture encompasses several 

key concepts to enable efficient data processing and management: 

1. Data Ingestion: The architecture includes a data ingestion layer responsible for collecting and 

processing data from various sources. The primary goal is to reliably and efficiently collect 

data and make it available for processing in real-time and batch processing layers. 

2. Real-Time Processing: The real-time layer handles the processing and analysis of data as it 

arrives, typically in a streaming fashion. This layer focuses on processing data in real-time to 

extract valuable insights and make timely decisions. 

3. Batch Processing: Alongside real-time processing, the architecture supports batch processing. 

This involves processing large volumes of data in scheduled or periodic batches to generate 

aggregated reports, perform complex computations, or perform offline analytics. 

4. Storage: Data storage is a critical component of the architecture. It involves storing both raw 

and processed data, ensuring it is accessible for future analysis, reporting, and retrieval. The 

architecture may employ distributed file systems or databases capable of handling large-scale 

data storage. 

5. Serving Layer: The serving layer is responsible for providing data to end-users or other 

systems in an easily consumable format. It focuses on delivering insights, reports, 

visualisations, or other relevant information derived from the processed data. 

6. Containerisation and Orchestration: Containerisation enables packaging applications and 

their dependencies into lightweight, portable containers. Orchestration tools provide 

automated management, scaling, and deployment of containerised applications, simplifying 

the administration and operation of the system. 

7. Continuous Integration and Continuous Deployment (CI/CD): The architecture supports 

CI/CD practices, enabling automated processes for building, testing, and deploying software 

applications. It streamlines the development workflow, ensuring efficient collaboration and 

quick deployment of updates or new features. 

The development of the IOP will leverage a comprehensive set of advanced technologies and tools. 

These include data ingestion frameworks, real-time processing frameworks, storage solutions, 

containerisation and orchestration platforms, and continuous integration and deployment tools. 

These technologies and tools will enable the efficient development and operation of the IOP, ensuring 

scalability, reliability, and streamlined workflows. 

Data Ingestion Layer 

The data ingestion layer plays a crucial role in both Kappa and Lambda architectures, as it is 

responsible for collecting and processing incoming data from various sources. The primary goal of 

this layer is to reliably and efficiently collect data from different sources and make it available for 

processing in the real-time and batch-processing layers. 

• Kafka is often used as the primary data ingestion system. Apache Kafka is a distributed 

streaming platform that is designed to handle high volumes of data in real-time. It is open-
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source and can be used for building real-time data pipelines and streaming applications that 

are reliable, scalable, and fault-tolerant. Kafka is built on top of a publish-subscribe model and 

uses a distributed architecture to provide high throughput, low latency, and high availability. 

Real-Time Layer 

The real-time layer of a Lambda or Kappa architecture is responsible for processing and analysing 

real-time data as it arrives, typically in a streaming fashion. Here are some example tools commonly 

used for the real-time layer of these architectures: 

• Apache Flink is an open-source stream processing framework that provides powerful APIs 

and features for building real-time data processing applications. Flink provides advanced 

windowing and state management capabilities and can be easily integrated with other systems 

like Kafka and Hadoop. 

• Apache Storm is a distributed real-time stream processing system widely used for processing 

high-volume, high-velocity data streams. Storm provides a simple programming model and 

flexible scalability options and can be integrated with various data sources, such as Kafka and 

HDFS. 

• Apache Spark Streaming is a real-time processing framework part of the larger Apache Spark 

ecosystem. Spark Streaming provides a high-level programming model that allows developers 

to process data streams using Spark's powerful batch processing engine, enabling real-time 

data processing at scale. 

Storage 

In a Kappa or Lambda architecture, data must be stored for batch and real-time processing. Here are 

some examples of storage tools that can be used in these architectures: 

• Apache Hadoop is an open-source framework for storing and processing large-scale data. 

Hadoop provides a distributed file system (HDFS) for storing data, as well as a batch 

processing system (MapReduce) for analysing data. Hadoop can be easily integrated with 

other tools, such as Apache Kafka and Apache Spark. 

• Apache Druid is a high-performance, distributed OLAP (Online analytical processing) database 

that is designed for real-time analytics. Druid provides fast query response times and can 

handle both streaming and batch data, making it ideal for real-time analysis in a Lambda 

architecture. 

Serving Layer 

The serving layer of a Kappa or Lambda architecture is responsible for serving data to end-users or 

other systems in a format that is easy to consume. Here are some examples of tools that can be used 

in the serving layer of a Kappa or Lambda architecture: 

• Apache Superset is an open-source, enterprise-ready business intelligence (BI) web 

application that is designed to explore and visualise data in real-time. Superset provides a 

user-friendly interface for creating interactive dashboards and visualisations, and it supports 

a wide range of data sources and visualisation types. 

• Trino is a powerful distributed SQL query engine that allows users to query and analyse large 

amounts of data stored in various data sources, making it an ideal solution for organisations 

that need to process and analyse massive datasets. Trino's distributed architecture allows it 

to process queries in parallel across multiple nodes, and it supports a wide range of data 

formats and connectors, including Hadoop, Cassandra, and MySQL, among others. 

Containerisation and Orchestration 
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Containerisation and orchestration are critical components of modern software architecture, and 

Docker and Kubernetes are two popular tools for packaging and deploying software applications 

consistently, efficiently, and scalable. 

• Docker is a containerisation platform that allows developers to package their software 

applications in containers. Containers are lightweight, standalone executable packages that 

include all the necessary dependencies and libraries to run an application. Docker provides a 

consistent and reliable environment for running applications, regardless of the underlying 

infrastructure. 

• Kubernetes is an open-source container orchestration platform that allows developers to 

automate containerised applications' deployment, scaling, and management. Kubernetes 

provides a highly resilient and fault-tolerant infrastructure for running applications at scale. In 

addition, it can automatically manage containerised workloads across multiple nodes, making 

managing and scaling applications easier. 

Continuous Integration and Continuous Deployment (CI/CD) 

CI/CD is a set of best practices and tools that enable developers to automate the process of building, 

testing, and deploying software applications. With CI/CD, developers can continuously integrate 

code changes into a shared repository, automatically test and validate the code, and automatically 

deploy the changes to production. 

• GitHub Actions is a powerful and flexible tool for automating the software development 

process, available on the code repository platform GitHub. With GitHub Actions, developers 

can easily build, test, and deploy their software applications directly from their GitHub 

repository. 

4.2. IOP User interfaces 

4.2.1. Overall structure and work plan 

Frontend refers to the part of a software system that users directly interact with. It includes 

modules/interfaces that present information and provide functionalities to users. These interfaces 

are designed based on the connection with the system's services, as defined in an ontology (M18 in 

D3.3). The frontend aims to comprehensively gather and present information from multiple 

modules/interfaces, integrating the Decision Support System (DSS) and the digital maturity and 

sustainability assessment module. 

The development of frontend involves two main steps. Firstly, the design of the modules/interfaces 

and the identification of the information presented and functionalities of each interface are 

performed. This step includes defining the connection between the interfaces and the 

modules/services of the system using the provided ontology. Secondly, the actual development of 

the modules/interfaces and their online connectivity takes place. This development follows the 

guidelines and protocols defined in T3.1 and T3.2, ensuring proper implementation and integration. 

The participation of INO and AUTO is required to align with physical components from WP4 and 

modules from WP1. 

During the deployment phase (M30 to M36) with the collaboration of MOL and ORI, the frontend 

will be developed further. The tasks involve deploying the Interactive Online Platform (IOP) in the 

facilities of MOL and ORI. The IOP is expected to provide a comprehensive presentation of 

information gathered by the interfaces, integrating the DSS and the digital maturity and sustainability 

assessment module. The frontend will be constantly maintained based on the results of the 

demonstration activities (WP5) to ensure its functionality and performance. 
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4.2.2. Technologies for development and deployment 

Open-source front-end development and design tools have become increasingly popular due to their 

flexibility and accessibility. Nowadays, there is a need for graphical user interfaces for a website or 

an application to be user-friendly in order to impart knowledge from the server side effectively. As a 

result, front-end frameworks serve as the foundation for the advancement of front-end deployment. 

These tools offer a wide range of features that help developers create user-friendly interfaces and 

deploy them remotely to end users. Some commonly used open-source tools for front-end 

development and design are: 

• React: is a front-end JavaScript library for developing user interfaces and related components. 

It employs the MVC architecture with a different table of presentation and data availability. One of 

its distinguishing features is the Virtual DOM (Document Object Model) and how it handles document 

access and manipulation. The DOM interacts well with HTML and XML documents, causing them to 

behave similarly to a tree structure, and each HTML element functions as an object. To create the 

components, React uses the JSX coding style, with a mix of HTML quotes and tag syntax. It breaks 

down larger components into smaller ones that can be managed separately and individually. Its core 

feature is component reusability, which facilitates collaboration and reuse in other parts of the 

application. One aspect that must be considered is that due to its multiple and constant updates, it is 

hard to create proper documentation, which affects the learning curve for beginners. 

• Angular: is a comprehensive JavaScript framework for building complex web applications. It 

provides a complete set of tools for building UI components, managing data, and handling user 

interactions. Angular also offers support for server-side rendering, making it suitable for large-scale 

applications. It is a Typescript-based development platform developed by Google. Angular is a 

component-based framework for developing a set of tools for developers to use to create, build, test, 

and modify code and a collection of well-integrated libraries. It also allows scaling single-page 

applications to enterprise-level applications based on specific needs. It can benefit from a large 

learning and support community and decreases the amount of code since most important features 

(such as two-way data binding) are provided by default. Despite the large community, the initial 

learning curve can be steep due to its complexity and great variability of use. 

• Vue.js: is a progressive JavaScript framework for building user interfaces. It focuses on 

simplicity and ease of use, allowing developers to create interactive UIs with a reduced amount of 

effort. Vue.js also offers built-in support for animations, routing, and state management. Since small 

in size, it is simple to install and download while it offers simplified binding of existing applications 

and provides extensive documentation. It also assists developers in understanding peer front-end 

frameworks such as Angular.js, React, and others. Its MVVM (Model-View-ViewModel) architecture 

makes it easier to handle HTML blocks. Unlike Angular and React, it's beginner friendly and comprises 

detailed documentation. One thing that must be considered is that, while fast and easy, it may not be 

suitable for large projects. 

• Svelte: is an innovative JavaScript compiler designed to produce high-performance user 

interfaces. It was created in 2017 and is still in its early stages of development. It is distinct in that it 

does not employ a virtual DOM, but a specialised JavaScript Virtual Machine designed specifically for 

creating user interfaces. This allows Svelte to be up to ten times faster than other platforms, such as 

Angular and React frameworks. Therefore, svelte is a good choice if a small and quick application is 

needed by a small team of front-end developers, including beginners. However, due to its relatively 

small community, it might be unsuitable for large projects since this front-end framework is not widely 

used, and there might be a lack of the necessary help and tooling. 
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• jQuery: is a fast, lightweight, cross-platform JavaScript library for easily manipulating HTML 

documents and handling events from a client-side perspective. It provides a simple and intuitive API 

for handling common tasks such as DOM manipulation, event handling, and AJAX requests. jQuery 

is widely used in web development and can easily integrate with other libraries and frameworks. One 

of the main benefits of using jQuery is that it can significantly reduce the amount of JavaScript code 

required to achieve the desired effect. It allows developers to write more concise code, easier to read 

and understand and often faster to execute than pure JavaScript. Overall, jQuery is a powerful and 

widely used tool in web development, with a large and active community of developers continually 

contributing to its development and improvement. 

• Backbone.js: is a well-known JavaScript library that provides web applications with proper 

structure by providing models with customised events and major key-value binding. There are 

libraries of enriched APIs that include functions, declarative event handling, and views. It 

communicates well with the current API via a RESTful JSON user interface. It is lightweight since it 

only uses two JS libraries: Underscore.js and jQuery. This language is ideal for creating single-page 

web applications and keeping multiple aspects in sync. With the help of the Backbone Layout 

Manager, developers can use predefined perspectives. It is based on the Model-View-Controller 

(MVC) architecture, where models represent the data and the logic behind it, views define the user 

interface, and controllers act as the glue between the two. An aspect that is best considered is that it 

does not support two-way data binding. 

• Semantic-UI: created in 2014, it is a CSS (Cascading Style Sheets) framework based on organic 

language syntax. It provides a collection of pre-built UI components and design elements for building 

responsive and user-friendly websites and web applications. It uses natural language principles to 

describe classes, making it easier for developers to understand and remember the classes for specific 

UI elements. It also supports a wide range of plugins and integrations with other libraries and 

frameworks, such as React and AngularJS. Some of the key features of Semantic-UI include a 

responsive grid system, a variety of UI components such as buttons, forms, menus, and models, 

support for theming and customisation, and a collection of utility classes and helpers. It is also 

designed to be accessible and compatible with modern web technologies and browsers. 

Unfortunately, also this framework suffers from a small community.  

Overall, these open-source tools provide developers with a wide range of options for creating user-

friendly and accessible front-end interfaces that can be easily deployed to end-users remotely. 

However, it is difficult to say which of the presented frameworks is the most suitable since each has 

strengths and weaknesses, not to mention multiple complexities and frequently released updates 

bringing new features to the table. 
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5. Conclusions – Next steps 

5.1. Development plan 

The development plan for the IOP backend architecture encompasses the design, implementation, 

and integration of various components to enable efficient data processing and management. With a 

focus on real-time and batch processing, robust data storage, seamless data delivery, containerization, 

and CI/CD practices, the plan ensures scalability, reliability, and streamlined workflows. Additionally, 

the development of an SDK facilitates easy integration and interaction with the IOP, enhancing its 

usability for developers and fostering a vibrant ecosystem. 

> Data Ingestion Layer: 

o Select and configure an appropriate data ingestion framework, such as Apache Kafka. 

o Set up Kafka clusters and topics to handle the incoming data streams. 

o Develop connectors or adaptors to integrate with various data sources. 

o Implement data validation, transformation, and enrichment processes as needed. 

> Real-Time Processing Layer: 

o Choose a real-time processing framework like Apache Flink, Apache Storm, or Apache 

Spark Streaming based on the specific requirements. 

o Set up the chosen framework and integrate it with the data ingestion layer. 

o Design and implement real-time data processing workflows and analytics pipelines. 

o Define and configure windowing, state management, and fault-tolerance mechanisms. 

> Batch Processing Layer: 

o Determine the batch processing requirements and select appropriate tools, such as 

Apache Hadoop and Apache Spark. 

o Set up Hadoop clusters and configure the distributed file system (HDFS). 

o Develop batch processing jobs using MapReduce, Spark, or other suitable 

technologies. 

o Implement scheduled or triggered batch processing workflows based on the required 

frequency. 

> Storage: 

o Determine the storage requirements for raw and processed data. 

o Select and set up the storage solutions, such as HDFS for batch processing or Apache 

Druid for real-time analytics. 

o Configure data replication, partitioning, and backup strategies for data durability and 

availability. 

o Integrate the storage solutions with the data ingestion and processing layers. 

> Serving Layer: 

o Identify the data delivery requirements and select appropriate tools, such as Apache 

Superset or Trino. 

o Set up the serving layer tools and configure data connectors and access controls. 

o Design and develop interactive dashboards, visualizations, or APIs to serve the 

processed data. 

o Ensure scalability, performance, and security of the serving layer components. 

> Containerisation and Orchestration: 
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o Choose Docker as the containerisation platform and Kubernetes as the orchestration 

platform. 

o Containerize the backend components and their dependencies using Docker. 

o Set up Kubernetes clusters and configure deployment manifests for each component. 

o Define scaling policies, health checks, and load balancing configurations. 

o Automate the deployment and management of containers using Kubernetes. 

> Continuous Integration and Continuous Deployment (CI/CD): 

o Configure a CI/CD pipeline using GitHub Actions or other suitable tools. 

o Set up automated build processes to package and test the backend components. 

o Define test suites and quality assurance processes to ensure code correctness. 

o Implement deployment automation to promote validated changes to production. 

o Monitor the CI/CD pipeline for errors, failures, and performance issues. 

> Testing and Quality Assurance: 

o Develop comprehensive test plans covering unit tests, integration tests, and end-to-

end tests. 

o Implement automated testing frameworks and tools to validate the functionality of 

the backend architecture. 

o Perform load testing and performance testing to ensure scalability and 

responsiveness. 

o Conduct security testing and vulnerability assessments to protect against threats. 

o Continuously monitor and optimize the backend architecture based on test results and 

feedback. 

> Documentation and Knowledge Sharing: 

o Create detailed documentation for the backend architecture, including design 

decisions, configurations, and workflows. 

o Document the setup and configuration processes for each component. 

o Define, design and implement the SDK. 

o Develop comprehensive documentation and usage guides for the SDK. 

o Develop user guides and troubleshooting guides. 

o Facilitate knowledge sharing within the development team through code reviews, 

technical presentations, training sessions and an online help desk available in the IOP. 

5.2. MLOps in the IOP 

The IOP adopts MLOps practices to streamline model deployment, monitoring, and management 

processes. This involves the implementation of automated workflows that cover data preprocessing, 

model training, evaluation, and deployment stages. By utilising continuous integration and 

deployment (CI/CD) pipelines, the IOP ensures efficient updates and version control. Robust 

monitoring and logging systems are employed to track model performance, detect anomalies, and 

facilitate proactive maintenance and optimisation efforts. 

5.3. Cloud 

The IOP leverages cloud computing to harness the scalability and flexibility of cloud infrastructure. It 

utilises on-demand provisioning of computing resources, storage, and networking. Cloud services 

enable elastic scaling to adapt to varying workloads. Data storage and processing are efficiently 
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managed through cloud-based databases and object storage, ensuring secure and reliable access from 

anywhere. 

5.4. Open-source approach 

The open-source approach of the IOP emphasises collaboration, customisation, and innovation by 

leveraging open-source software and frameworks. It enables developers to access, modify, and 

contribute to the platform, ensuring transparency, flexibility, and community involvement. This 

approach promotes interoperability, avoids vendor lock-in, and facilitates integration with a wide 

range of technologies and tools. 

In line with the open-source approach, the IOP utilises popular open-source technologies such as 

Apache Kafka for data ingestion and event streaming. This enables seamless collection and processing 

of large volumes of data in real-time. Additionally, Apache Flink is employed for real-time stream 

processing, providing scalable and reliable solutions for analysing data as it arrives. The IOP also 

utilises open-source frameworks like Apache Hadoop and Apache Druid for efficient data storage, 

processing, and analytics. These frameworks empower the IOP to handle diverse data sources and 

support advanced analytics capabilities. 
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